Research and Publications
View article and brief.
Although fuels treatments are generally shown to be effective at reducing fire severity, there is widespread interest in monitoring that efficacy as the climate continues to warm and the incidence of extreme fire weather increases. This paper compared basal area mortality across adjacent treated and untreated sites in the 2021 Dixie Fire of California’s Sierra Nevada.
View article.
This study defines five metrics that collectively provide comprehensive and complementary insights into the effect of fire regimes on ecosystem resilience and components of biodiversity. These include (1) Species Habitat Availability, a measure of the amount of suitable habitat for individual species; (2) Fire Indicator Species Index, population trends for species with clear fire responses; (3) Vegetation Resilience, a measure of plant maturity and the capability of vegetation communities to regenerate after fire; (4) Desirable Mix of Growth Stages, an indicator of the composition of post-fire age-classes across the landscape; and (5) Extent of High Severity Fire, a measure of the effect of severe fire on post-fire recovery of treed vegetation communities. Each metric can be quantified at multiple spatial and temporal scales relevant to evaluating fire management outcomes. Results highlight four characteristics of metrics that enhance their value for management: (1) they quantify both status and trends through time; (2) they are scalable and can be applied consistently across management levels (from individual reserves to the whole state); (3) most can be mapped, essential for identifying where and when to implement fire management; and (4) their complementarity provides unique insights to guide fire management for ecological outcomes.
View article.
This study aimed to determine the flammability of cheatgrass compared to two native perennial grasses (Columbia needlegrass [Achnatherum nelsonii] and bluebunch wheatgrass [Pseudoroegneria spicata]) across a range of fuel moistures. All three grass species had decreased flammability with increasing fuel moisture. Columbia needlegrass averaged 11% lower mass consumption than cheatgrass, and bluebunch wheatgrass had longer flaming duration and higher maximum temperatures than cheatgrass and Columbia needlegrass. The addition of cheatgrass to each perennial grass increased combined mass consumption, flaming duration, and flame heights. For these three attributes, the impact differed by the amount of cheatgrass in the mixture. Maximum and mean temperatures during perennial grass combustion were similar with and without cheatgrass addition. Some attributes of Columbia needlegrass flammability when burned with cheatgrass were higher than expected based on the flammability of each species, suggesting that Columbia needlegrass may be susceptible to pre-heating from combustion of cheatgrass. Conversely, the flammability of bluebunch wheatgrass and cheatgrass together had both positive and negative interactive effects, suggesting the impact on joint flammability from cheatgrass differs by perennial grass species.
View article.
This study estimates how fire regimes have changed in the major Great Basin vegetation types over the past 60 years with comparisons to historical (pre-1900) fire regimes. We explore potential drivers of fire regime changes using existing spatial data and analysis. Across vegetation types, wildfires were larger and more frequent in the contemporary period (1991–2020) than in the recent past (1961–1990). Contemporary fires were more frequent than historical in two of three ecoregions for the most widespread vegetation type, basin and Wyoming big sagebrush. Increases in fire frequency also occurred in saltbush, greasewood, and blackbrush shrublands, although current fire return intervals remain on the order of centuries. Persistent juniper and pinyon pine woodlands burned more frequently in contemporary times than in historical times. Fire frequency was relatively unchanged in mixed dwarf sagebrush shrublands, suggesting they remain fuel-limited. Results suggest that quaking aspen woodlands may be burning less frequently now than historically, but more frequently in the contemporary period than in the recent past. We found that increased fire occurrence in the Great Basin is associated with increased abundance and extent of nonnative annual grasses and areas with high concentrations of anthropogenic ignitions. Findings support the need for continuing efforts to reduce fire occurrences in Great Basin plant communities experiencing excess fire and to implement treatments in communities experiencing fire deficits. Results underscore the importance of anthropogenic ignitions and discuss more targeted education and prevention efforts. Knowledge about signals of fire regime changes across the region can support effective deployment of resources to protect or restore plant communities and human values.
View booklet.
The reciprocal nature of our human interactions with our natural environment can be viewed through the lens of fire management in the West by federal, state, and private land managers. A wildfire’s impact is not affected by the presence of a geopolitical boundary, it is still inherently a natural process fueled by relatively well-understood dynamics. Yet, changing climate conditions such as extended heat waves, droughts, shifts in rainfall patterns or types of precipitation are changing how fire behaves in the West. From a Tribal member’s perspective, these climatic conditions, social development, and ecological degradation are all connected events with relatively predictable consequences. Because there is a reciprocal relationship with our environment, we are collectively accountable for the consequences of our choices in a modern context through a changing climate.
View (and/or order) the poster.
Sagebrush ecosystems, broadly distributed across western North America (see map), are imperiled due to a combination of modern and historical factors causing widespread degradation and habitat loss. Sagebrush shrubs are so common in these ecosystems that they create a “sea” across the landscape. This poster highlights wildflowers (forbs) common in sagebrush vegetation of the Great Basin.
These wildflowers support countless wildlife species, including some species only found in sagebrush ecosystems, such as the greater sage-grouse. (See “High sage-grouse value.”) Many forb species (including most featured here) are highly valued and used for food, medicine and ceremony by the many Indigenous peoples of the Great Basin. There are hundreds of forb species in sagebrush ecosystems, all with their own unique characteristics. The 31 species on this poster highlight common species potentially useful in restoration. These species also represent the variety of size, height, flowering timing and taxonomy (evolutionary relationships) found in typical sagebrush communities. Note: These species rarely, if ever, occur as closely together as shown in this poster.
View guide. (Click on the word “guide” to view it.)
A photo guide for use in classifying fire behavior fuel models from the Scott and Burgan (2005) library that are common to the sagebrush steppe of the American west. The goal of this guide is to enable the quick and easy classification of fuel models in sagebrush steppe to –
- enhance the mapping of fuel beds in an increasingly fire prone region,
- guide the evaluation of fuel and post-fire restoration treatments, and
- improve our understanding of fuel conditions during times of the year when wildfire preparedness is greatest (i.e. hot and dry).
View article.
We sampled depth-resolved layers from fire-impacted soil and combusted litter and woody materials in a series of recent pile burn scars near West Yellowstone, Montana and nearby unburned mineral soil controls to assess whether the pile burn scars exhibited microbial signatures characteristic of forest soils impacted by recent high severity wildfire. Changes in soil carbon and nitrogen chemistry and patterns of microbial alpha and beta diversity broadly aligned with those observed following wildfire, particularly the enrichment of so-called ‘pyrophilous’ taxa. Furthermore, many of the taxa enriched in burned soils likely encoded putative traits that benefit microorganisms colonizing these environments, such as the potential for fast growth or utilization of pyrogenic carbon substrates. We suggest that pile burn scars may represent a useful proxy along the experimental gradient from muffle furnace or pyrocosm studies to largescale prescribed burns in the field to advance understanding of the soil (and related layers, like ash) microbiome following high severity wildfires, particularly when coupled with experimental manipulation. Finally, we discuss existing research gaps that experimentally manipulated pile burns could be utilized to address.