Research and Publications

Journal article icon

Deconstructing the process pathways underlying beaver-related restoration

View article.

This analysis reveals that outcomes are often predicated on complex process pathways over which humans have limited control. Consequently, expectations often shift through the course of projects, suggesting that a more useful paradigm for evaluating process-based restoration would be to identify relevant processes and to rigorously document how projects do or do not proceed along expected process pathways using both quantitative and qualitative data.

Journal article icon

Changes in fire weather climatology under 1.5 C and 2.0 C warming

View article.

The 2015 Paris Agreement led to a number of studies that assessed the impact of the 1.5 °C and 2.0 °C increases in global temperature over preindustrial levels. However, those assessments have not actively investigated the impact of these levels of warming on fire weather. In view of a recent series of high-profile wildfire events worldwide, we access fire weather sensitivity based on a set of multi-model large ensemble climate simulations for these low-emission scenarios. The results indicate that the half degree difference between these two thresholds may lead to a significantly increased hazard of wildfire in certain parts of the world, particularly the Amazon, African savanna and Mediterranean. Although further experiments focused on human land use are needed to depict future fire activity, considering that rising temperatures are the most influential factor in augmenting the danger of fire weather, limiting global warming to 1.5 °C would alleviate some risk in these parts of the world.

Synthesis/Technical Report icon

USGS Wildland Fire Science Strategic Plan, 2021-26

View the plan.

The Strategic Plan also defines critical, core fire science capabilities for understanding fire-related and fire-responsive earth system processes and patterns and informing management decision making. The Strategic Plan is composed of four integrated priorities, each with associated goals and specific strategies for accomplishing the goals:

  • Priority 1: Produce state-of-the-art, actionable fire science.—Provide scientific analyses, data, and tools that inform current and future fire and land management decision making and promote understanding of fire-related and fire-responsive earth system processes and patterns.
  • Priority 2: Engage stakeholders in science production and science delivery.—Use a science co-production approach throughout the fire research life cycle to develop and maintain collaborations with stakeholders who are actively and continually engaged. This ensures that USGS research platforms and science products are relevant and useful for fire and land management decision making.
  • Priority 3: Effectively communicate USGS fire science capacity, products, and information to a broad audience.— Strategically manage communications to effectively build awareness of and access to USGS wildland fire science and decision-support tools among key external and internal stakeholders.
  • Priority 4: Enhance USGS organizational structure and advance support for fire science.—Provide organizational structure and support that improves fire science production, coordination, and cooperation within the USGS and with external partners.
Journal article icon

Synthesis on the effects of cheatgrass invasion on Great Basin carbon storage

View article.

Cheatgrass invasion decreases biodiversity and rangeland productivity and alters fire regimes. Our findings indicate cheatgrass invasion also results in persistent biomass carbon (C) losses that occur with sagebrush replacement. We estimate that conversion from native sagebrush to cheatgrass leads to a net reduction of C storage in biomass and litter of 76 g C/m2, or 16 Tg C across the Great Basin without management practices like native sagebrush restoration or cheatgrass removal.

Synthesis/Technical Report icon

Sagebrush Conservation Strategy—Challenges to Sagebrush Conservation

Access report. Watch the webinar

The sagebrush (Artemisia spp.) biome, its wildlife, and the services and benefits it provides people and local communities are at risk. Development in the sagebrush biome, for many purposes, has resulted in multiple and often cumulative negative impacts. These impacts, ranging from simple habitat loss to complex, interactive changes in ecosystem function, continue to accelerate even as the need grows for the resources provided by this biome. This “Sagebrush Conservation Strategy—Challenges to Sagebrush Conservation,” is an overview and assessment of the challenges facing land managers and landowners in conserving sagebrush ecosystems. This strategy is intended to provide guidance so that the unparalleled collaborative efforts to conserve the iconic greater sage-grouse (Centrocercus urophasianus) by State and Federal agencies, Tribes, academia, nongovernmental organizations, and stakeholders can be expanded to the entire sagebrush biome to benefit the people and wildlife that depend on this ecosystem. This report is organized into 3 parts.

“Part I. Importance of the Sagebrush Biome to People and Wildlife” introduces the biome and a subset of the more than 350 species of plants and animals associated with sagebrush for which there is some level of conservation concern. These include several sagebrush obligates that have been petitioned for listing under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.), including greater sage-grouse, Gunnison sage-grouse (C. minimus; listed as threatened), and pygmy rabbit (Brachylagus idahoensis). Other sagebrush-dependent species, such as pronghorn (Antilocapra americana) and mule deer (Odocoileus hemionus), have experienced significant population declines.

“Part II. Change Agents in the Sagebrush Biome—Extent, Impacts, and Effort to Address Them” is an overview of the variety of change agents that are causing the continued loss and degradation of sagebrush. Topics covered include altered fire regimes, invasive plant species, conifer expansion, overabundant free-roaming equids, and human land uses, including energy development, cropland conversion, infrastructure, and improper livestock grazing. Climate changes, including warmer temperatures and altered amounts and timing of precipitation, have and will likely increasingly compound negative effects to sagebrush ecosystems from all these threats.

“Part III. Current Conservation Paradigm and Other Conservation Needs for Sagebrush” begins with an overview of how sage-grouse conservation, and the associated efforts and collaborations, may be able to address threats to and restoring degraded sagebrush and habitat for other sagebrush-dependent and -associated species. Meeting conservation goals for sage-grouse, mule deer, pygmy rabbits, and other sagebrush-associated wildlife will require extensive restoration of sagebrush communities already converted or degraded by the change agents outlined in Part II of this report. Concepts, considerations, techniques for restoration, and adaptive management and monitoring are discussed to help set the stage for potential strategies to improve conditions throughout the sagebrush biome. Communication, outreach, and engagement can enhance grassroots conservation efforts and build the next generation of managers, practitioners, scientists, and communicators who will care for the sagebrush ecosystem and stimulate or sustain public participation in sagebrush conservation issues.

Synthesis/Technical Report icon

Invasive species in forests and rangelands of the US: A synthesis

View synthesis.

Invasive Species in Forests and Rangelands of the United States is a sector-wide scientific assessment of the current state of invasive species science and research in the United States. Leading experts on invasive pests, climate change, social sciences, and forest and rangeland management contributed to highlighting the science and identifying knowledge gaps on a diverse array of topics related to invasive species. Stakeholders from nongovernmental organizations, academic institutions, professional organizations, private corporations, and state and federal agencies representing public, private, and tribal interests also provided input to the assessment. Input from these stakeholders helped to frame the subject matter content and management options presented in this report, ensuring relevance for decision-makers and resource managers.

 

Journal article icon

Warm, dry conditions inhibit aspen growth, but tree growth and size predict mortality risk in the southwestern US

View article.

Widespread, rapid aspen (Populus tremuloides) mortality since the beginning of the 21st century, sometimes called sudden aspen decline (SAD), has been documented in many locations across North America, but it has been particularly pronounced in the southwestern U.S. We investigated the relationship between aspen growth, mortality, and climate across three forest types in northern Arizona using crossdated tree-ring samples from 126 live and 132 dead aspen. Aspen growth was negatively correlated with warm temperatures and positively associated with higher precipitation. Using survival analysis techniques to investigate the links between aspen mortality, tree traits, and climatic conditions, we found that tree traits played a larger role in mortality risk than climate factors. Trees with larger diameters, older trees, and trees with faster growth rates over the past 50 years had a reduced risk of mortality. Management actions aimed at maintaining the most vigorous, fastest growing aspen in the region could help mitigate the impacts of a warmer, drier future.

Journal article icon

Variable thinning and Rx fire influence tree mortality and growth during and after severe drought

View article.

California’s high density, fire-excluded forests experienced an extreme drought accompanied by warmer than normal temperatures from 2012 to 2015, resulting in the deaths of millions of trees. We examined tree mortality
and growth of mixed-conifer stands that had been experimentally treated between 2011 and 2013 with two different thinning treatments, one with more structural variability (HighV) and one with less structural variability (LowV), applied alone or in combination with prescribed burning. Tree mortality between 2014 and 2018 varied by species ranging from 42% of white fir (Abies concolor) to 18% of sugar pine (Pinus lambertiana), 12% of
incense cedar (Calocedrus decurrens) and 10% of yellow pine (P. ponderosa and P. jeffreyi). Lower overall tree mortality rates at this location relative to drier locations in the southern Sierra Nevada suggested that drought
effects may have been ameliorated by lower water deficits due to our site’s more northerly location and deep, productive soils in combination with reductions in tree competition following thinning and burning. Averaged
across burn treatments, thinning reduced the overall mortality rate between 2014 and 2018 from 34% to 11%. A total of 23% of the basal area was lost in the unthinned control treatments during this time period, while basal
area was unchanged in the thinned treatments, with growth offsetting mortality. There was no significant difference in mortality or basal area change between LowV and HighV, suggesting that leaving trees at variable spacing may not compromise growth or resilience of the stand during a drought. Overall tree mortality was greater in the prescribed burn treatments, most pronounced in the smaller tree size classes, and varied by species, with burning having a significant effect on incense cedar and all pines, but not white fir. Trees with greater competition (Hegyi index) were more likely to die, particularly when also burned. Burning, however, consumed surface fuels and lowered fire hazard. With predictions of warmer droughts and greater weather variability, reducing forest density (basal area) and keeping surface fuel loads low will be important for building greater resilience to future drought stress and wildfire.

Journal article icon

Detecting shrub recovery in sagebrush: Comparing Landsat with field data

View article.

The need for basic information on spatial distribution and abundance of plant species for research and management in semiarid ecosystems is frequently unmet. This need is particularly acute in the large areas impacted by megafires in sagebrush steppe ecosystems, which require frequently updated information about increases in exotic annual invaders or recovery of desirable perennials. Remote sensing provides one avenue for obtaining this information. We considered how a vegetation model based on Landsat satellite imagery (30 m pixel resolution; annual images from 1985 to 2018) known as the National Land Cover Database (NLCD) “Back-in-Time” fractional component time-series, compared with field-based vegetation measurements. The comparisons focused on detection thresholds of post-fire emergence of fire-intolerant Artemisia L. species, primarily A. tridentata Nutt. (big sagebrush). Sagebrushes are scarce after fire and their paucity over vast burn areas creates challenges for detection by remote sensing. Measurements were made extensively across the Great Basin, USA, on eight burn scars encompassing ~500 000 ha with 80 plots sampled, and intensively on a single 113 000 ha burned area where we sampled 1454 plots.

Synthesis/Technical Report icon

Addressing 21st century conservation challenges to benefit our people, economy, and environment

View report.

Today, American conservation confronts the climate crisis, the biodiversity crisis, a global pandemic, skeptics of these threats, a massive federal deficit, economic hardship, social injustice, and political divisions that threaten our democracy. Yet, at the same time, people continue to explore new ways to work together to use science, collaboration, and innovation to advance efforts to protect our environment, conserve our natural resource legacy, and broaden its benefits for all Americans.

Narrow your search

Stay Connected