Research and Publications
WindNinja, a tool developed by RMRS scientists, delivers high-resolution wind predictions within seconds for emergency fire responders making on-the-ground decisions. The program computes spatially-varying wind fields to help predict winds at small scales in complex terrain. These predictions are extremely important in fire-prone landscapes where local changes in the near-surface wind are not predicted well by either operational weather models or expert judgment but are extremely important for accurate fire behavior predictions.
The fire spread rate within WUI communities is determined for nine wildfires that were ranked among the most destructive wildfires in North America. An improved quasi-empirical model that considers radiation and fire spotting as modes of fire spread inside a community is proposed. The new model is validated using the documented spread rates during the 2007 Witch and Guejito fires and the 2017 Tubbs fire. The proposed model is computationally efficient and can be used to quantify fire spread rate and the number of affected structures inside a community during a wildfire event.
Because three key thresholds must be crossed all at once for a wildfire to start, avoiding just one of these thresholds─ ignitions, drought, or continuous fuels (Fig.1)─ could significantly reduce the likelihood of wildfire. As climate change makes fire weather more common everywhere, managing ignitions where wind is problematic and managing fuels where drought is problematic will help to keep stochastic, out-of-regime fires contained. Where fire management tools won’t help, a fire danger zone should be designated to reduce human activity and development, much like volcano or flooding zone designations.
View article.
Wildland research, management, and policy in western democracies have long relied on concepts of equilibrium: succession, sustained yield, stable age or species compositions, fire return intervals, and historical range of variability critically depend on equilibrium assumptions. Not surprisingly, these largely static concepts form the basis for societal expectations, dominant management paradigms, and environmental legislation. Knowledge generation has also assumed high levels of stasis, concentrating on correlational patterns with the expectation that these patterns would be reliably transferrable. Changes in climate, the introduction of large numbers of exotic organisms, and anthropogenic land conversion are leading to unprecedented changes in disturbance regimes and landscape composition. Importantly, these changes are largely non-reversable; once introduced exotic species are seldom eradicated, climates will continue to warm for the foreseeable future, and many types of land conversion cannot be easily undone.
View synthesis.
There has been an increasing interest in the economic health cost from smoke exposure from wildfires in the past 20 years, particularly in the north-western USA that is reflected in an emergent literature. In this review, we provide an overview and discussion of studies since 2006 on the health impacts of wildfire smoke and of approaches for the estimation of the associated economic cost. We focus on the choice of key variables such as cost estimators for determining the economic impact of mortality and morbidity effects. In addition, we provide an in-depth discussion and guidance on the functioning, advantages and challenges of BenMAP-CE, freely available software of the US Environmental Protection Agency (EPA) that has been used in a growing number of studies to assess cost from wildfire smoke. We highlight what generates differences in outcomes between relevant studies and make suggestions for increasing the comparability between studies. All studies, however, demonstrate highly significant health cost from smoke exposure, in the millions or billions of US dollars, often driven by increases in mortality. The results indicate the need to take health cost into account for a comprehensive analysis of wildfire impacts.
View article.
This paper describes the ongoing development of a comprehensive set of vegetation reference conditions based on over 900 quantitative vegetation dynamic models and accompanying description documents for terrestrial ecosystems in the USA. These models and description documents, collaboratively developed by more than 800 experts around the country through the interagency LANDFIRE Program, synthesize fundamental ecological information about ecosystem dynamics, structure, composition, and disturbance regimes before European-American settlement. These products establish the first comprehensive national baseline for measuring vegetation change in the USA, providing land managers and policymakers with a tool to support vegetation restoration and fuel management activities at regional to national scales. Users have applied these products to support a variety of land management needs including exploring ecosystem dynamics, assessing current and desired conditions, and simulating the effects of management actions. In an era of rapid ecological change, these products provide land managers with an adaptable tool for understanding ecosystems and predicting possible future conditions.
View article.
This paper examines the effect of fire on small mammals and evaluate the relative sensitivity to fire among different groups using a systematic review methodology that included critiquing the literature with respect to survey design and statistical analysis. Overall, small mammal abundance is slightly higher, and demographic parameters more favourable, in unburnt sites compared to burnt sites. This was more pronounced in species with body size range of 101–1000 g and with habitat requirements that are sensitive to fire (e.g. dense ground cover): in 66.6 and 69.7% of pairwise comparisons, abundance or a demographic parameter were higher in unburnt than burnt sites. This systematic review demonstrates that there remains a continued focus on simple shifts in abundance with regards to effect of fire and small mammals, which limits understanding of mechanisms responsible for change. Body size and habitat preference were most important in explaining variation in small mammal species’ responses to fire.
View article.
Characterising the impacts of wildland fire and fire suppression is critical information for fire management decision-making. Here, we focus on decisions related to the rare larger and longer-duration fire events, where the scope and scale of decision-making can be far broader than initial response efforts, and where determining and demonstrating efficiency of strategies and actions can be particularly troublesome. We organize our review around key decision factors such as context, complexity, alternatives, consequences and uncertainty, and for illustration contrast fire management in Andalusia, Spain, and Montana, USA. Two of the largest knowledge gaps relate to quantifying fire impacts to ecosystem services, and modelling relationships between fire management activities and avoided damages. The relative magnitude of these and other concerns varies with the complexity of the socioecological context in which fire management decisions are made. To conclude our review, we examine topics for future research, including expanded use of the economics toolkit to better characterize the productivity and effectiveness of suppression actions, integration of ecosystem modelling with economic principles, and stronger adoption of risk and decision analysis within fire management decision-making.
View article.
This paper examines administrative policies and barriers to using outcome-based approaches to manage fire risk in Idaho through 70 semistructured interviews with permittees, BLM staff, and other agency and nongovernmental stakeholders in three Idaho BLM field areas. We analyzed how rules and norms in policy implementation contributed to perceptions of barriers within and among different field areas. Factors affecting perceptions of outcome-based rangeland management implementation included BLM staff tenure, permittee-agency relationships, beliefs about the efficacy of grazing to manage fire risk, and leadership and staff experience in navigating National Environmental Policy Act requirements or potential lawsuits. Differences in the informal institutions among field areas led to different interpretations of latitude found within formal institutions (“gray zones”) for implementation. This study highlights the importance of local context and the interactions between administrative policies and agency culture for implementing adaptive approaches to managing wildfire risk on public rangelands.
View article.
Our results underscore the importance of active and comprehensive management actions immediately following wildfire (i.e., seeding coupled with planting sagebrush), that might offset short-term impacts of wildfire by timing rapid recovery of sagebrush to meet short-term species’ habitat requirements. Burned leks likely have substantial immediate impacts that may extend beyond wildfire boundaries, especially if critical source habitats are removed. Such impacts could fragment habitat and disrupt connectivity, thereby affecting larger populations and possibly contributing to more widespread declines in sage-grouse populations.