Research and Publications

Journal article icon

Accounting for aboveground carbon storage in shrubland and woodland ecosystems in the Great Basin

Read the study.

This study used a combination of field estimates, remotely sensed data, and existing land cover maps to create a spatially explicit estimate of aboveground carbon storage within the Great Basin, a semi‐arid region of the western United States encompassing 643,500 km2 of shrubland and woodland vegetation. The Great Basin ecosystems contain an estimated 295.4 Tg in aboveground carbon, which is almost double the previous estimates that only accounted for forested ecosystems in the same area. Aboveground carbon was disproportionately stored in pinyon‐juniper woodland (43.7% carbon, 16.9% land area), while the shrubland systems accounted for roughly half of the total land area (49.1%) and one‐third of the total carbon. Our results emphasize the importance of distinguishing and accounting for the distinctive contributions of shrubland and woodland ecosystems when creating carbon storage estimates for dryland regions.

Journal article icon

Rethinking resilience to wildfire

View the article.

This study brought together ecologists and social scientists to confront this challenge and consider how to better promote both social and ecological resilience to a more flammable world. The result led to the new insights highlighted in the paper “Rethinking resilience to wildfire” – that catastrophic wildfires are forcing us to rethink what social–ecological resilience to wildfire means, and accept that more diverse approaches to resilience thinking are needed to facilitate human coexistence with wildfire.

Synthesis/Technical Report icon

Fire behavior and smoke modelling: Needs for next-generation forecasting

Read the review.

This review paper presents simulations and experiments of hypothetical prescribed burns with a suite of selected fire behavior and smoke models and identifies major issues for model improvement and the most critical observational needs. The results are used to understand the new and improved capability required for the next-generation SRF systems and to support the design of the Fire and Smoke Model Evaluation Experiment (FASMEE) and other field campaigns. The next-generation SRF systems should have more coupling of fire, smoke and atmospheric processes. The development of the coupling capability requires comprehensive and spatially and temporally integrated measurements across the various disciplines to characterize flame and energy structure (e.g. individual cells, vertical heat profile and the height of well-mixing flaming gases), smoke structure (vertical distributions and multiple subplumes), ambient air processes (smoke eddy, entrainment and radiative effects of smoke aerosols) and fire emissions (for different fuel types and combustion conditions from flaming to residual smouldering), as well as night-time processes (smoke drainage and super-fog formation).

Synthesis/Technical Report icon

A review of US wildland firefighter entrapments: Trends, important environmental factors and research needs

Read the review.

Examination of the historical literature indicated that entrapment potential peaks when fire behavior rapidly deviates from an assumed trajectory, becomes extreme and compromises the use of escape routes, safety zones or both. Additionally, despite the numerous safety guidelines that have been developed as a result of analyzing past entrapments, we found issues with the way factual information from these incidents is reported, recorded and stored that make quantitative investigations difficult. To address this, a fire entrapment database was assembled that revealed when details about the location and time of entrapments are included in analyses, it becomes possible to ascertain trends in space and time and assess the relative influence of various environmental variables on the likelihood of an entrapment. Several research needs were also identified, which highlight the necessity for improvements in both fundamental knowledge and the tools used to disseminate that knowledge.

Journal article icon

Oil and gas development on federal lands and sage-grouse habitats

Read the report.

The purpose of this analysis was to evaluate the number of federal oil and gas leases issued and number of APD issued between 2015 and 2019 that occurred within BLM-designated sage-grouse habitat (General and Priority Habitats). More specifically, our objective was to evaluate the differences in the number and acreage of federal oil and gas leases and number of APDs assigned inside and outside of BLM-designated sage-grouse habitat from October 1, 2015 to March 15, 2019.

Journal article icon

Longer-term evaluation of sagebrush restoration after juniper control and herbaceous vegetation trade-offs

Read the study.

This study compared seeding and not seeding mountain big sagebrush after juniper control (partial cutting followed with burning) in fully developed juniper woodlands (i.e., sagebrush had been largely excluded) at five sites, 7 and 8 yr after seeding. Sagebrush cover averaged ~ 30% in sagebrush seeded plots compared with ~ 1% in unseeded plots 8 yr after seeding, thus suggesting that sagebrush recovery may be slow without seeding after juniper control. Total herbaceous vegetation, perennial grass, and annual forb cover was less where sagebrush was seeded. Thus, there is a trade-off with herbaceous vegetation with seeding sagebrush. Our results suggest that seeding sagebrush after juniper control can accelerate the recovery of sagebrush habitat characteristics, which is important for sagebrush-associated wildlife. We suggest land manager and restoration practitioners consider seeding sagebrush and possibly other shrubs after controlling encroaching trees where residual shrubs are lacking after control.

Journal article icon

Disturbance type and sagebrush community type affect community structure after shrub removal

Read the study.

This study analyzed effect sizes to assess responses of sagebrush, perennial and annual grasses and forbs, and ground cover to treatments. Most treatments successfully reduced sagebrush cover over the short and long term. All treatments increased long-term perennial grass cover in Wyoming big sagebrush communities, but in mountain big sagebrush communities, perennial grasses increased only when seeded after fire. In both sagebrush communities, treatments generally resulted in short-term, but not long-term, increases in perennial forb cover. Annual grasses increased in all treatments on sites dominated by mountain big sagebrush but stayed constant or decreased on sites dominated by Wyoming big sagebrush. This result was unexpected because sites dominated by Wyoming big sagebrush are typically thought to be less resilient to disturbance and less resistant to invasion than sites dominated by mountain big sagebrush. Together, these results indicate some of the benefits, risks, and contingent outcomes of sagebrush reduction treatments that should be considered carefully in any future decisions about applying such treatments.

Journal article icon

Survivability of Wyoming big sagebrush transplants

Read the study.

This study was initiated in 2012 to test fall versus spring transplanting. Fall transplanting success averaged 65% with a range of 41% to 82%, while spring transplant success averaged 41% with a range of 13% to 65%. The cold desert of the Great Basin receives the majority of its precipitation during winter months, therefore providing a more reliable source of available precipitation for newly transplanted Wyoming big sagebrush seedlings. A significant part of increasing big sagebrush transplanting success is the combination of increased container size and moving the timing of transplanting from spring to fall due to an increase in favorable and reliable precipitation.

Journal article icon

Bunchgrass root abundances and their relationship to resistance and resilience of burned shrub-steppe

Read the study.

This study used a standardized protocol for root measurement across sagebrush steppe burned in the 2015 Soda fire in the Northern Great Basin, United States. Nearly all (99%) bunchgrasses, including seedlings, had deeper roots than the surrounding annual grasses (mean depth of annuals = 6.8 ± 3.3 cm), and 88% of seedlings remained rooted in response to the “tug test” (uprooting resistance to ~ 1 kg of upward pull on shoot), with smaller plants (mean height and basal diameters < 20 cm and < 2 cm, respectively) more likely to fail the test regardless of their root abundance. Lateral roots of bunchgrasses were scarcer in larger basal gaps (interspace between perennials) but were surprisingly not directly related to cover of surrounding exotic annual grasses (EAG). However, EAG cover increased with the size of basal gaps and decreased with greater basal diameter of bunchgrass (in addition to prefire EAG abundance). These results provide some support for 1) the importance of basal gaps and bunchgrass diameters as indicators of both vulnerability to annual grass invasion and bunchgrass root abundance and 2) the need for more detailed methods for root measurement than used here in order to substantiate their usefulness in understanding rangeland resistance and resilience.

Synthesis/Technical Report icon

The Joint Fire Science Program: 20 years of innovation and contributions

Read article.

In 1998, the Joint Fire Science Program (JFSP) was statutorily authorized as a joint partnership between the U.S. Department of the Interior and the U.S. Department of Agriculture Forest
Service. The program provides leadership to the wildland fire science community by identifying high-priority fire science research needs that will enhance the decisionmaking ability of
managers to meet their objectives. This publication celebrates and describes the JFSP’s contributions to and impact on the wildland fire community over the past 20 years.

Narrow your search

Stay Connected