Article / Book

Journal article icon

Use of the Wildland Fire Decision Support System (WFDSS) for full suppression and managed fires within the SW Region of the USFS

View article.

This study presents the results of thematic analysis from 46 semi-structured interviews with employees in the US Forest Service Southwestern Region with a WFDSS user account. Users indicated that the program is viewed as efficient for sharing information about wildfires and documenting management decision rationale. They identified emerging gaps in technical proficiency and the need for specialized training that creates high-level users to help guide teams using the program.

Journal article icon

Goldilocks forbs: Survival is highest outside—but not too far outside—of Wyoming big sagebrush canopies

View article.

This study investigated survival of transplanted herbaceous seedlings at different distances from Wyoming big sagebrush canopies. We planted two native perennial forb species, Munro’s globemallow and common yarrow, and two native perennial grass species, bluebunch wheatgrass and bottlebrush squirreltail, at four distances from sagebrush canopies at six sites across the Intermountain West, repeated across 2 years. Under above-normal precipitation, proximity to sagebrush influenced first-year survival of the forb, but not grass, species. Globemallow and yarrow survival were highest mid-way between the canopy dripline and maximum interspace distance between neighboring sagebrush plants. Ground cover characteristics and globemallow survival covaried with respect to distance from shrub, suggesting ground cover characteristics as indicators of suitable planting microsites. Under drier conditions, survival of all species was low and unaffected by distance from canopies. Our results demonstrate the value of fine-tuning the canopy-interspace paradigm to more carefully consider how plant performance may differ across zones within the interspace region between plants, especially when the goal is to maximize plant establishment in nondrought years.

Journal article icon

Extreme wildfire supersedes long-term fuel treatment influences on fuel and vegetation in chaparral ecosystems of northern CA

View article.

Vegetation and substrate burn severity was characterized as moderate across the study site and did not differ among treatments. Contrasting with higher pre-fire shrub density in the mastication + burning treatment, 2-year post-fire live shrub density did not differ among treatments. Higher pre-fire fine woody fuel loading in the mastication treatment did not correspond to post-fire fuel loading among treatments, while the hand thinned treatment was the only treatment where fine fuel loading was not significantly reduced post-fire. Total plant species richness increased in all treatment types following wildfire, largely driven by an increase in exotic species. Native cover decreased, and exotic cover increased in oak and chaparral types, but greater exotic species cover in the mastication + burning treatment in chaparral was maintained following wildfire.

Journal article icon

Addressing barriers to proactive restoration of at-risk sagebrush communities: A causal layered analysis

View article.

Twelve in-depth interviews were conducted, and responses were analyzed using a qualitative method, causal layered analysis, not previously applied in a land management context. In the most superficial (litany) layer, cost and scale were prominent. The next (systemic) layer was framed by policy and bureaucracy limitations as well as technical barriers to implementation. In the third (worldview) layer, lack of a proactive management tradition within agencies represented a principal barrier. In the deepest (myth/metaphor) layer, the central belief is that human intervention should be used to protect ecosystem services only after they are disrupted due to human activity. Based on the different obstacles found at each level, we suggest ways to overcome the barriers detected.

Journal article icon

Human population growth and accessibility from cities shape rangeland condition in the American West

View article.

Human population growth contributes to the decline of sagebrush-steppe rangelands. More accessible rangelands from population centers have higher quality. Open space preservation provides opportunities for rangeland conservation in cities. Coordinated conservation strategies are necessary to protect rangeland ecosystems.

Journal article icon

Bird associations with floristics and physiognomy differ across five biogeographic subregions of the Great Basin

View article.

The plant species and functional groups that were associated significantly with occupancy varied considerably among subregions. Twenty-four percent of bird-plant associations that were significant at the Great Basin level were not significant in any subregion. Associations between occupancy and floristics differed the most between the Sierra Nevada and central or western subregions, and the least between the eastern and western subregions. Associations between occupancy and physiognomy differed the most between the Sierra Nevada and western and central subregions, and the least between the northern and western subregions. These differences and similarities may reflect variations in climate or bird communities or differences in sampling effort. In addition, the number and strength of associations between occupancy and floristic or physiognomic covariates varied substantially among bird species and subregions. We recommend that the management of birds across the Great Basin or other large ecoregions evaluate and account for geographic variation in environmental attributes associated with occupancy, and not assume bird-plant relations are consistent across the Great Basin.

Journal article icon

Habitat-relationships reveal potential negative effects of conifer removal on a non-target species

View article.

Our results indicate pinyon jay populations are declining within Bird Conservation Region 16. Jay density was positively associated with sagebrush cover, Palmer Drought Severity Index, and pinyon-juniper cover. Conversely, jay populations were negatively associated with Normalized Difference Vegetation Index (NDVI). We found higher pinyon jay densities within locations possessing both sagebrush and pinyon-juniper cover; conditions characteristic of phase I and II conifer encroachment which are preferentially targeted for conifer removal to restore sagebrush communities. Conifer removal, if conducted at locations with high pinyon jay densities, is therefore likely to negatively affect jay abundance.

Synthesis/Technical Report icon

A review of methods used to link remotely sensed data with the Composite Burn Index

View synthesis.

Study findings largely reflect methods applied in North America – particularly in the western USA – due to the high number of studies in that region. We find the use of different methods across studies introduces variations
that make it difficult to compare outcomes. Additionally, the existing suite of comparative studies focuses on one or few of many possible sources of uncertainty. Thus, compounding error and propagation throughout the many decisions made during analysis is not well understood. Finally, we suggest a broad set of methodological information and key rationales for decision-making that could facilitate future reviews.

Journal article icon

Examining the influence of mid-tropospheric conditions and surface wind changes on extremely large fires and fire growth days

View article.

Focus on wind changes and mid-tropospheric properties may be counterproductive or distracting when one is concerned about major growth events on very large fires.

Journal article icon

Shifting social-ecological fire regimes explain increasing structure loss from Western wildfires

View article.

This study documented a 246% rise in West-wide structure loss from wildfires between 1999–2009 and 2010–2020, driven strongly by events in 2017, 2018, and 2020. Increased structure loss was not due to increased area burned alone. Wildfires became significantly more destructive, with a 160% higher structure-loss rate (loss/kha burned) over the past decade. Structure loss was driven primarily by wildfires from unplanned human-related ignitions (e.g. backyard burning, power lines, etc.), which accounted for 76% of all structure loss and resulted in 10 times more structures destroyed per unit area burned compared with lightning-ignited fires. Annual structure loss was well explained by area burned from human-related ignitions, while decadal structure loss was explained by state-level structure abundance in flammable vegetation. Both predictors increased over recent decades and likely interacted with increased fuel aridity to drive structure-loss trends.

Narrow your search

Stay Connected