Article / Book
View article.
We evaluated seeding bitterbrush (Purshia tridentata) after wildfire in former western juniper (Juniperus occidentalis ssp. occidentalis) canopy compared with interspace microsites at six locations for 3 yr post seeding. Bitterbrush abundance was 3.6-fold greater in former canopy compared with interspace microsites after 3 yr. Bitterbrush height was 1.5 to 2.5-fold greater in former canopy compared with interspace microsites. The first year after fire, exotic annual grass cover was 15.6-fold greater in interspace compared with canopy microsites. Abundance and cover of other herbaceous vegetation were generally also greater in the interspace. Exotic annual grass and native bunchgrass abundance increased substantially over time in former canopy microsites, suggesting abundant resource availability. Less herbaceous competition and presumably greater resource availability in former canopies probably resulted in greater success of seeded bitterbrush. These results suggest that capitalizing on spatial variability in environments can be used to increase restoration efficiency. After fire in western juniper−encroached rangelands, former juniper canopy microsites are a favorable environment for establishment and growth of seeded bitterbrush and could be targeted for restoration efforts to improve efficiency.
View article.
We evaluated plant community succession following prescribed fire on Artemisia arbuscula var. arbuscula (low sagebrush) steppe in southeastern Oregon. Treatments were “prescribed burned” (burn; fall 2012) and “unburned” (control) low sagebrush a steppe, and the study design was a randomized complete block with 4 replicates per treatment. Herbaceous yield and vegetation canopy cover and density were compared between treatments (2012–2020). Fire practically eliminated low sagebrush and there was no recruitment of new plants in the first 8 years after burning. Herbaceous yield in the burn treatment was about double the control for most of the postfire period. Native perennial grasses and forbs constituted 94% to 96% and Bromus tectorum L. (cheatgrass) 0.2% to 2% of total herbaceous yield in the control. In the burn treatment, perennial grasses and forbs constituted 83% to 87%, native annual forbs 2% to 5%, and cheatgrass 3% to 9% of total herbaceous yield. Despite an increase in cheatgrass, the burned low sagebrush sites were dominated by herbaceous perennial grasses and forbs and exhibited high levels of resilience and resistance. After prescribed fire, for the study sites and comparable low sagebrush associations, weed control or seeding are not necessary to recover the native herbaceous community. However, the results in our study are for low-severity prescribed fire in intact low sagebrush plant communities. Higher-severity fire, as might occur with wildfire, and in low sagebrush communities having greater prefire invasive weed composition should not be assumed to develop similarly high levels of community resilience and resistance.
View article.
In 2006, we initiated fuel reduction treatments (prescribed fire, mowing, and herbicide applications [tebuthiuron and imazapic]) in six Artemisia tridentata ssp. wyomingensis communities. We evaluated long-term effects of these fuel treatments on: (1) magnitude and longevity of fuel reduction; (2) Greater sage-grouse habitat characteristics; and (3) ecological resilience and resistance to invasive annual grasses. Responses were analyzed using repeated-measures linear mixed models. Response variables included plant biomass, cover, density and height, distances between perennial plants, and exposed soil cover. Prescribed fire produced the greatest reduction in woody fuel over time. Mowing initially reduced woody biomass, which recovered by year 10. Tebuthiuron did not significantly reduce woody biomass compared to controls. All woody fuel treatments reduced sagebrush cover to below 15% (recommended minimum for Greater Sage-grouse habitat), but only prescribed fire reduced cover to below controls. Median mowed sagebrush height remained above the recommended 30 cm. Cheatgrass (Bromus tectorum) cover increased to above the recommended maximum of 10% across all treatments and controls. Ecological resilience to woody fuel treatments was lowest with fire and greatest with mowing. Low resilience over the 10 posttreatment years was identified by: (1) poor perennial plant recovery posttreatment with sustained reductions in cover and density of some perennial plant species; (2) sustained reductions in lichen and moss cover; and (3) increases in cheatgrass cover. Although 10 years is insufficient to conclusively describe final ecological responses to fuel treatments, mowing woody fuels has the greatest potential to reduce woody fuel, minimize shrub mortality and soil disturbance, maintain lichens and mosses, and minimize long-term negative impacts on greater sage-grouse habitat. However, maintaining ecological resilience and resistance to invasion may be threatened by increases in cheatgrass cover, which are occurring regionally.
View article.
Scientists in and beyond academia face considerable challenges to effectively sharing science, including lack of time and training, systemic disincentives, and the complexity of the modern media/attention landscape. Considering these constraints, 3 achievable shifts in mindset and practice can substantively enhance science communication efforts. Here, we provide evidence-based and experientially informed advice on how to center shared values, articulate science communication goals, and leverage the power of stories to advance our communication goals in connection with the values we share with our stakeholders. In addition to a discussion of relevant, foundational principles in science communication, we provide actionable recommendations and tools scientists can immediately use to articulate their values, identify shared values between stakeholders, set science communication goals, and use storytelling as a means of building and reinforcing relationships around shared values, thereby working productively to achieve those goals
View article.
We investigate priorities and effectiveness of wildfire suppression using a novel empirical strategy that compares 1,500 historical fire perimeters with the spatial distribution of assets at risk to identify determinants of wildfire suppression efforts. We find that fires are more likely to stop spreading as they approach homes, particularly when those homes are of higher value. This effect of threatened assets persists after controlling for physical factors (fuels, landscape, and weather) using outputs from a state-of-the-art wildfire simulation tool, and the probability that fire spread will be halted is affected by characteristics of homes 1–2 km from a fire’s edge. Our results provide evidence that wildfire suppression can substantively affect outcomes from wildfires but that some groups may benefit more from wildfire management than others.
View article.
Pre- and post-season assessments of primary (e.g. psychosocial risk factors, physical fitness and psychological capital) and secondary (e.g. work engagement, job stress and incidence of injury) outcomes facilitated comprehensive evaluation. The psychosocial education intervention program was effective at buffering participant appraisals of 12 of 13 psychosocial risk factors, namely: organizational culture, civility, psychological demands, balance, psychological support, leadership expectations, growth and development, influence, workload management, engagement, protection and safety. Participants in the psychosocial education intervention also reported lower stress relating to organizational support compared with those who not receiving the intervention program. Wildland firefighters receiving either or both intervention programs reported a significantly lower incidence rate of injury (9.9%) compared with the organisation’s 5-year average (16.0%).
View article.
We created a novel, multiple-region, N-mixture community model (MNCM) to examine the relations of riparian area and fragmentation with species richness of breeding birds in mountain ranges within the Great Basin, Nevada, USA. Projections of future riparian contraction suggested that decreases in species richness are likely to be greatest in canyons that currently have moderate (~10–25 ha) amounts of riparian vegetation. Our results suggest that if a goal of management is to maximize the species richness of breeding birds in montane riparian areas in the Great Basin, it may be more effective to focus on total habitat area than on fragmentation of patches within canyons, and that canyons with at least moderate amounts of riparian vegetation should be prioritized.
View article.
o examine the short-term effects of wildfire on belowground processes in the northern Sierra Nevada, we collected soil samples along a gradient from unburned to high fire severity over 10 months following a wildfire. This included immediate pre- and post-fire sampling for many variables at most sites. While season and soil moisture did not substantially alter pH, microbial biomass, net N mineralization, and nitrification in unburned locations, they interacted with burn severity in complex ways to constrain N cycling after fire. In areas that burned, pH increased (at least initially) after fire, and there were non-monotonic changes in microbial biomass. Net N mineralization also had variable responses to wetting in burned locations. These changes suggest burn severity and precipitation patterns can interact to alter N cycling rates following fire.
View article.
Drawing on recent syntheses of the scientific evidence, this paper examines “myths” commonly used to
oppose climate- and wildfire-adaptation of fire-prone forests. We use an established framework
designed to counter science denial by recognizing the fallacy for each myth. Fallacies are false
arguments; there are several kinds of fallacies, including cherry picking (selecting only a portion of
facts to support a conclusion), false dichotomies or oversimplification (claiming only two possible
outcomes), circular arguments, or straw man (misdirection) arguments. Learning to recognize
logical fallacies and other characteristics of science denial is an essential component of any
assessment of arguments for and against proposed actions
View article.
Study found that expected sediment and phosphorus loads were lower under the scenario that emphasized thinning, whereas scenarios that increased prescribed burning resulted in loads that were comparable to scenarios that involved less treatment. These results reflect the finding from the WEPP analysis that prescribed burning is expected to reduce ground cover more than is thinning. Our analysis supports efforts to increase fuel reduction treatments to mitigate future wildfires, but it also suggests that preventative treatments may not avoid a long-term decline in water quality as wildfires increase with climate change.