Article / Book

Journal article icon

Simple hand-built structures can help streams survive wildfires and drought

View article.

Think of a floodplain as a sponge: Each spring, floodplains in the West soak up snow melting from the mountains. The sponge is then wrung out during summer and fall, when the snow is gone and rainfall is scarce. The more water that stays in the sponge, the longer streams can flow and plants can thrive. A full sponge makes the landscape better equipped to handle natural disasters, since wet places full of green vegetation can slow floods, tolerate droughts or stall flames.

Journal article icon

Behavior-specific occurrence of pinyon jays in 3 Great Basin study areas and significance for PJ management

View article.

The Pinyon Jay is a highly social, year-round inhabitant of pinyon-juniper and other coniferous woodlands in the western United States. Range-wide, Pinyon Jays have declined ~ 3-4% per year for at least the last half-century. Occurrence patterns and habitat use of Pinyon Jays have not been well characterized across much of the species’ range, and obtaining this information is necessary for better understanding the causes of ongoing declines and determining useful conservation strategies. Additionally, it is important to better understand if and how targeted removal of pinyon-juniper woodland, a common and widespread vegetation management practice, affects Pinyon Jays. The goal of this study was to identify the characteristics of areas used by Pinyon Jays for several critical life history components in the Great Basin, which is home to nearly half of the species’ global population, and to thereby facilitate the inclusion of Pinyon Jay conservation measures in the design of vegetation management projects. To accomplish this, we studied Pinyon Jays in three widely separated study areas using radio telemetry and direct observation and measured key attributes of their locations and a separate set of randomly-selected control sites using the U. S. Forest Service’s Forest Inventory Analysis protocol. Data visualizations, principle components analysis, and logistic regressions of the resulting data indicated that Pinyon Jays used a distinct subset of available pinyon-juniper woodland habitat, and further suggested that Pinyon Jays used different but overlapping habitats for seed caching, foraging, and nesting. Caching was concentrated in low-elevation, relatively flat areas with low tree cover; foraging occurred at slightly higher elevations with generally moderate but variable tree cover; and nesting was concentrated in slightly higher areas with high tree and vegetation cover. All three of these Pinyon Jay behavior types were highly concentrated within the lower-elevation band of pinyon-juniper woodland close to the woodland-shrubland ecotone. Woodland removal projects in the Great Basin are often concentrated in these same areas, so it is potentially important to incorporate conservation measures informed by Pinyon Jay occurrence patterns into existing woodland management paradigms, protocols, and practices.

Journal article icon

Chemical and bio‐herbicide mixture increased exotic invaders, across a burned landscape

View article.

A treatment targeting a single plant functional group did not achieve lasting success in these diversely invaded communities. Spraying alone did not release native perennials sufficiently to counteract the simultaneous release of secondary invaders and the return of target invaders. Planting or seeding may also be needed to achieve management goals.

Journal article icon

Interagency program to supply and manage native plant materials- 2002 report to congress

View the report.

Wildland fires in 1999 and 2000 were the worst in 50 years and burned millions of acres of public lands. A shortage of native plant materials substantially increased the cost of rehabilitation and restoration efforts on the burned lands. Ecosystem restoration with native plants, in many cases, is the best option for restoring land health for multiple resource values and minimizing the establishment of invasive weeds.

Journal article icon

Deconstructing the process pathways underlying beaver-related restoration

View article.

This analysis reveals that outcomes are often predicated on complex process pathways over which humans have limited control. Consequently, expectations often shift through the course of projects, suggesting that a more useful paradigm for evaluating process-based restoration would be to identify relevant processes and to rigorously document how projects do or do not proceed along expected process pathways using both quantitative and qualitative data.

Journal article icon

Changes in fire weather climatology under 1.5 C and 2.0 C warming

View article.

The 2015 Paris Agreement led to a number of studies that assessed the impact of the 1.5 °C and 2.0 °C increases in global temperature over preindustrial levels. However, those assessments have not actively investigated the impact of these levels of warming on fire weather. In view of a recent series of high-profile wildfire events worldwide, we access fire weather sensitivity based on a set of multi-model large ensemble climate simulations for these low-emission scenarios. The results indicate that the half degree difference between these two thresholds may lead to a significantly increased hazard of wildfire in certain parts of the world, particularly the Amazon, African savanna and Mediterranean. Although further experiments focused on human land use are needed to depict future fire activity, considering that rising temperatures are the most influential factor in augmenting the danger of fire weather, limiting global warming to 1.5 °C would alleviate some risk in these parts of the world.

Journal article icon

Synthesis on the effects of cheatgrass invasion on Great Basin carbon storage

View article.

Cheatgrass invasion decreases biodiversity and rangeland productivity and alters fire regimes. Our findings indicate cheatgrass invasion also results in persistent biomass carbon (C) losses that occur with sagebrush replacement. We estimate that conversion from native sagebrush to cheatgrass leads to a net reduction of C storage in biomass and litter of 76 g C/m2, or 16 Tg C across the Great Basin without management practices like native sagebrush restoration or cheatgrass removal.

Journal article icon

Warm, dry conditions inhibit aspen growth, but tree growth and size predict mortality risk in the southwestern US

View article.

Widespread, rapid aspen (Populus tremuloides) mortality since the beginning of the 21st century, sometimes called sudden aspen decline (SAD), has been documented in many locations across North America, but it has been particularly pronounced in the southwestern U.S. We investigated the relationship between aspen growth, mortality, and climate across three forest types in northern Arizona using crossdated tree-ring samples from 126 live and 132 dead aspen. Aspen growth was negatively correlated with warm temperatures and positively associated with higher precipitation. Using survival analysis techniques to investigate the links between aspen mortality, tree traits, and climatic conditions, we found that tree traits played a larger role in mortality risk than climate factors. Trees with larger diameters, older trees, and trees with faster growth rates over the past 50 years had a reduced risk of mortality. Management actions aimed at maintaining the most vigorous, fastest growing aspen in the region could help mitigate the impacts of a warmer, drier future.

Journal article icon

Variable thinning and Rx fire influence tree mortality and growth during and after severe drought

View article.

California’s high density, fire-excluded forests experienced an extreme drought accompanied by warmer than normal temperatures from 2012 to 2015, resulting in the deaths of millions of trees. We examined tree mortality
and growth of mixed-conifer stands that had been experimentally treated between 2011 and 2013 with two different thinning treatments, one with more structural variability (HighV) and one with less structural variability (LowV), applied alone or in combination with prescribed burning. Tree mortality between 2014 and 2018 varied by species ranging from 42% of white fir (Abies concolor) to 18% of sugar pine (Pinus lambertiana), 12% of
incense cedar (Calocedrus decurrens) and 10% of yellow pine (P. ponderosa and P. jeffreyi). Lower overall tree mortality rates at this location relative to drier locations in the southern Sierra Nevada suggested that drought
effects may have been ameliorated by lower water deficits due to our site’s more northerly location and deep, productive soils in combination with reductions in tree competition following thinning and burning. Averaged
across burn treatments, thinning reduced the overall mortality rate between 2014 and 2018 from 34% to 11%. A total of 23% of the basal area was lost in the unthinned control treatments during this time period, while basal
area was unchanged in the thinned treatments, with growth offsetting mortality. There was no significant difference in mortality or basal area change between LowV and HighV, suggesting that leaving trees at variable spacing may not compromise growth or resilience of the stand during a drought. Overall tree mortality was greater in the prescribed burn treatments, most pronounced in the smaller tree size classes, and varied by species, with burning having a significant effect on incense cedar and all pines, but not white fir. Trees with greater competition (Hegyi index) were more likely to die, particularly when also burned. Burning, however, consumed surface fuels and lowered fire hazard. With predictions of warmer droughts and greater weather variability, reducing forest density (basal area) and keeping surface fuel loads low will be important for building greater resilience to future drought stress and wildfire.

Journal article icon

Detecting shrub recovery in sagebrush: Comparing Landsat with field data

View article.

The need for basic information on spatial distribution and abundance of plant species for research and management in semiarid ecosystems is frequently unmet. This need is particularly acute in the large areas impacted by megafires in sagebrush steppe ecosystems, which require frequently updated information about increases in exotic annual invaders or recovery of desirable perennials. Remote sensing provides one avenue for obtaining this information. We considered how a vegetation model based on Landsat satellite imagery (30 m pixel resolution; annual images from 1985 to 2018) known as the National Land Cover Database (NLCD) “Back-in-Time” fractional component time-series, compared with field-based vegetation measurements. The comparisons focused on detection thresholds of post-fire emergence of fire-intolerant Artemisia L. species, primarily A. tridentata Nutt. (big sagebrush). Sagebrushes are scarce after fire and their paucity over vast burn areas creates challenges for detection by remote sensing. Measurements were made extensively across the Great Basin, USA, on eight burn scars encompassing ~500 000 ha with 80 plots sampled, and intensively on a single 113 000 ha burned area where we sampled 1454 plots.

Narrow your search

Stay Connected