Article / Book

Open book with lines simulating text on left and right pages

Application of an original wildfire smoke health cost benefits transfer protocol to the western US, 2005-2015

View article.

This study provides the first time series estimates of PM2.5 smoke costs across mortality and several morbidity measures for the Western US over 2005–2015. This time period includes smoke from several megafires and includes years of record-breaking acres burned. Smoke costs are estimated using a benefits transfer protocol developed for contexts when original health data are not available. The novelty of our protocol is that it synthesizes the literature on choices faced by researchers when conducting a smoke cost benefit transfer. On average, wildfire smoke in the Western US creates $165 million in annual morbidity and mortality health costs.

Open book with lines simulating text on left and right pages

A framework for developing safe and effective large-fire response in a new fire management paradigm

View article.

This study identifies a broader set of objectives, decisions and constraints to be integrated into the next generation operational research models. Including these changes would support evaluation of a suite of response options and the efficient resource packages necessary to achieve response objectives, aiding decision maker’s ability to minimize responder exposure while reducing the social, ecological and economic impacts of wildfires. Researchers follow with a proposed framework for expanding current large fire decision support systems, and conclude by briefly highlighting critical research needs and organizational changes necessary to create and implement these tools and overcome the negative consequences of positive feedbacks derived from historical and current wildfire management policies and strategies.

Open book with lines simulating text on left and right pages

Analysis of the effects of slope, vegetation density, and ground surface roughness on travel rates for wildland firefighter escape route mapping

View paper.

This study compared resultant travel rates to LiDAR-derived estimates of slope, vegetation density and ground surface roughness using linear mixed effects modelling to quantify the relationships between these landscape conditions and travel rates. The best-fit model revealed significant negative relationships between travel rates and each of the three landscape conditions, suggesting that, in order of decreasing magnitude, as density, slope and roughness increase, travel rates decrease. Model coefficients were used to map travel impedance within the study area using LiDAR data, which enabled mapping the most efficient routes from fire crew locations to safety zones and provided an estimate of travel time.

Open book with lines simulating text on left and right pages

Fire science core curriculum

View the curriculum.

The Fire Science Core Curriculum – Promoting Awareness, Understanding, and Respect of Fire through Knowledge of the Science is designed to teach the basics of fire to non-fire-professional community members, including instructors and landowners, such as ranchers and farmers. The goal is to reduce risk and fire hazard through education and understanding.

Open book with lines simulating text on left and right pages

Meta-analysis of diet composition and potential conflict of wild horses with livestock and wild ungulates on western rangelands of North America

View article.

This analysis found that season, plant composition, and ungulate assemblage may all influence dietary competition between wild horses and other large ungulate sharing western North American rangelands; however, the low and nonsignificant heterogeneity values at alpha 0.01 for cattle:horse effect size comparisons suggest that cattle and horses respond to regional and seasonal variation similarly—a result not observed for other ungulate:horse comparisons. Our meta-analysis provides a robust data set for evaluations of diet composition for wild horses, livestock, and wildlife, whereas no empirical studies have assessed all species together.

Journal article icon

Pinyon and juniper encroachment into sagebrush ecosystems impacts distribution and survival of greater sage-grouse

View paper.

Collectively, these results provide clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper, especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover. Such areas may function as ecological traps that convey attractive resources but adversely affect population vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of pinyon-juniper cover in areas with similar ecological conditions to those of the Bi-State Distinct Population Segment, where populations occur at relatively high elevations and pinyon-juniper is abundant and widespread.

Open book with lines simulating text on left and right pages

An evaluation of the Forest Service hazardous fuels treatment program

View article.

As part of an internal program assessment, this study evaluated the extent of fuel treatments and wildfire occurrence within lands managed by the National Forest System (NFS) between 2008 and 2012. Annually, 45% of NFS lands that would have historically burned were disturbed by fuel treatments and characteristic wildfire, indicating that NFS lands remain in a “disturbance deficit.” The highest wildfire hazard class had the lowest percentage of area treated and the highest proportion of both wildfire of any severity and uncharacteristically high-severity wildfire, suggesting that an alternative distribution of fuel treatment locations will probably improve program effectiveness.

Open book with lines simulating text on left and right pages

Pretreatment tree dominance and conifer removal treatments affect plant succession in sagebrush communities

View paper.

This study found that to retain the shrub, especially sagebrush, components on a site and increase ecosystem resilience and resistance through increases in tall grasses, treatment should occur at low to mid tree dominance index (TDI) using mechanical methods, such as cutting or mastication. Effects of fire and mechanical treatments implemented at different phases of tree dominance create different successional trajectories that could be incorporated into state-and-transition-models to guide management decisions.

Open book with lines simulating text on left and right pages

Planned fires or more unchecked wildfires?

View article.

In a nutshell, Finney and other forest experts say, periodic fires reduce fine fuels such as pine needles. They stop young conifer trees from growing into big conifers. Meadows form and break up continuous stands of mature forest.

Open book with lines simulating text on left and right pages

The sage-grouse habitat mortgage: effective conifer management in space and time

View article.

This study estimates that fire has approximately twice the treatment life of cutting at time horizons approaching 100 yr, but, has high up-front conservation costs due to temporary loss of sagebrush. Cutting has less up-front conservation costs because sagebrush is unaffected, but it is more expensive over longer management time horizons because of decreased durability. Managing conifers within sage-grouse habitat is difficult because of the necessity to maintain the majority of the landscape in sagebrush habitat and because the threshold for negative conifer effects occurs fairly early in the successional process. The time needed for recovery of sagebrush creates limits to fire use in managing sage-grouse habitat. Utilizing a combination of fire and cutting treatments is most financially and ecologically sustainable over long time horizons involved in managing conifer-prone sage-grouse habitat.

Narrow your search

Stay Connected