Article / Book
View article.
We examined management effects on bee abundance and other insect pollinators on grazed and idle sagebrush rangelands in central Montana, USA. From 2016 to 2018, we sampled pollinators on lands enrolled in rest-rotation grazing, unenrolled grazing lands, and geographically separate idle lands without grazing for over a decade. Bare ground covered twice as much area (15% vs. 7) with half the litter (12% vs. 24) on grazed than idle regardless of enrollment. Bee pollinators were 2–3 times more prevalent in grazed than idle in 2016–2017. In 2018, bees were similar among grazed and idled during an unseasonably wet and cool summer that depressed pollinator catches; captures of secondary pollinators was similar among treatments 2 of 3 study years. Ground-nesting bees (94.6% of total bee abundance) were driven by periodic grazing that maintained bare ground and kept litter accumulations in check. In contrast, idle provided fewer nesting opportunities for bees that were mostly solitary, ground-nesting genera requiring unvegetated spaces for reproduction. Managed lands supported higher bee abundance that evolved with bison grazing on the eastern edge of the sagebrush ecosystem. Our findings suggest that periodic disturbance may enhance pollinator habitat, and that rangelands may benefit from periodic grazing by livestock.
View article.
Prescribed fire implementation is subject to multiple constraints, including the number of days characterized by weather and vegetation conditions conducive to achieving desired outcomes. Here, we quantify observed and projected trends in the frequency and seasonality of western United States prescribed fire days. We find that while ~2 C of global warming by 2060 will reduce such days overall (−17%), particularly during spring (−25%) and summer (−31%), winter (+4%) may increasingly emerge as a comparatively favorable window for prescribed fire especially in northern states.
View article.
The research presented in this article utilized mixed-method, residential surveys of property owners in Kittitas County, Washington, to explore influences on support for wildfire mitigation requirements and performance of voluntary mitigations on private lands. We found a high degree of variability in support for regulatory approaches, including relatively low levels of support for building or retrofitting regulations and a moderate level of support for vegetation management regulations. Perceptions about wildfire risk sources or public land management, past performance of wildfire mitigation actions, and support for shared, locally managed mitigations all correlated with support for differing regulatory approaches. We also found that performance of voluntary mitigation actions correlated with increasing wildfire program participation, differed among part-time or full- time residents, and were influenced by proximity to nearby property boundaries. Our results suggest that the most supported strategy in the study area may be the establishment of local, tax funded districts that encourage voluntary mitigation actions tailored to local circumstances. We conclude the paper by comparing our results to existing lessons from wildfire social science.
View article.
arge-scale disturbances, such as megafires, motivate restoration at equally large extents. Measuring the survival and growth of individual plants plays a key role in current efforts to monitor restoration success. However, the scale of modern restoration (e.g., >10,000 ha) challenges measurements of demographic rates with field data. In this study, we demonstrate how unoccupied aerial system (UAS) flights can provide an efficient solution to the tradeoff of precision and spatial extent in detecting demographic rates from the air.
View article.
We use examples of plot data identified from a reference period (1961-1990) and mid-century (2056–2065) analogs across North American biomes to compare and illustrate the outcomes of projected vegetation change and seed transfer. These examples showcase that mid-century analogs may be located in any cardinal direction and vary greatly in spatial distance and abundance from no analog to hundreds depending on the site. The projected vegetative transitions will have substantial impacts on conservation programs and ecosystem services. Our approach highlights the complexity that climate change presents to managing ecosystems, and the need for predictive tools in guiding land management decisions to mitigate future impacts caused by climate change.
View article.
Theory predicts that effective environmental governance requires that the scales of management account for the scales of environmental processes. A good example is community wildfire protection planning. Plan boundaries that are too narrowly defined may miss sources of wildfire risk originating at larger geographic scales whereas boundaries that are too broadly defined dilute resources. Although the concept of scale (mis)matches is widely discussed in literature on risk mitigation as well as environmental governance more generally, rarely has the concept been rigorously quantified. We introduce methods to address this limitation, and we apply our approach to assess scale matching among Community Wildfire Protection Plans (CWPPs) in the western US. Our approach compares two metrics: (1) the proportion of risk sources encompassed by planning jurisdictions (sensitivity) and (2) the proportion of area in planning jurisdictions in which risk can originate (precision). Using data from 852 CWPPs and a published library of 54 million simulated wildfires, we demonstrate a trade-off between sensitivity and precision. Our analysis reveals that spatial scale match—the product of sensitivity and precision—has an n-shaped relationship with jurisdiction size and is maximal at approximately 500 km2. Bayesian multilevel models further suggest that functional scale match—via neighboring, nested, and overlapping planning jurisdictions—may compensate for low sensitivity. This study provides a rare instance of a quantitative framework to measure scale match in environmental planning and has broad implications for risk mitigation as well as in other environmental governance settings.
View article.
Before workshops on prescribed fire for private lands, we surveyed participants in six prescribed fires on private lands workshops in the Central Sierra Nevada from 2018 to 2019 (N = 172). We found that participants “want to use” pile burns and broadcast prescribed fires more than other land management treatments. There was also a strong interest in mechanical treatments in contrast to low interest in grazing. Some participants had “heard about” and “want to use” some pathways to apply prescribed fire on their lands, including government programs, contractors, friends and family, and Prescribed Burn Associations (PBAs). People had multiple objectives for their prescribed fire goals, and the majority wanted to promote ecosystem health, e.g., reduce fire hazards, foster natural land health, and reduce invasive plants. Perceived barriers were greatest for safety, cost, and resources while fewer participants perceived permits as a barrier.
View article.
Study design, interview discussions, and field observations from both case studies reveal the importance of nuanced and responsive approaches for the use of 3D visualizations, with an emphasis on the implementation of protocols that ensure the risk of harm to the intended audience is minimal. We share five considerations for use of visualizations as communication tools with public and professional audiences, expanding existing research into post-fire spaces: (1) determine whether the use of visualizations will truly benefit users; (2) connect users to visualizations by incorporating local values; (3) provide context around model uncertainty; (4) design and share visualizations in ways that meet the needs of the user; (5) be cognizant of the emotional impacts that sharing wildfire visualizations can have.
View article.
Fires in the wildland-urban interface (WUI) are an important issue globally. To understand the change of WUI, we develop a 9 km worldwide unified wildland-urban interface database for 2001–2020 with Random Forest models and satellite data. We find that WUI has been increasing in all populated continents from 2001 to 2020 and the global relative increase is 24%, with the largest relative increase (∼59%) over Africa. Global total fire counts decrease by 10% from 2005 to 2020, whereas the WUI fraction of fire counts increases by 23%. The global total burned area decreases by 22% from 2005 to 2020, whereas the WUI fraction of burned area increases by 35%. These are mainly due to the expansion of WUI area. On all the populated continents, the WUI fractions of fire counts are higher than the WUI fractions of burned area, implying that WUI fires tend to have smaller sizes than wildland fires. We also project future WUI changes for the years 2030 and 2040, together with the projection of future fire burned area under different shared socioeconomic pathways (SSP) scenarios in the Community Earth System Model version 2 (CESM2). The projected global WUI fraction (excluding Antarctica and the oceans) is 5.9% in 2040 compared to 4.8% in 2020. The global WUI fraction of burned area is projected to increase from now to 2040 under most scenarios analyzed in this study, unless the WUI area stays at the 2020 level together with the projected burned area under SSP4-4.5. This study is a first step to understanding the changes of WUI fires at the global scale and demonstrates a growing importance of WUI fires. The global multi-year WUI and WUI fire datasets developed in this study can facilitate future work quantifying the impacts of WUI fires on air quality and climate.
View article.
Legal, operational, and administrative factors have hindered the implementation of proposed wildland fire risk reduction management actions. Investing in steep-slope systems, expanding use of temporary roads, and revising administrative rules to allow for appropriately tailored mechanical thinning in special conservation areas are possible ways to meet fuel reduction treatment objectives of the USDA Forest Service Wildfire Crisis Strategy in twenty-one landscapes across the western United States. Broadening the land base available for mechanical treatment allows for flexibility to develop treatment plans that optimize across the multiple dimensions of effective landscape-scale fuel treatment design and restore fire as a key ecosystem process.