Synthesis / Tech Report

Synthesis/Technical Report icon

A mixed methods literature review and framework for decision factors that may influence the utilization of managed wildfire on federal lands, USA

View synthesis.

This review spanned 1976 to 2013 and used thematic coding to identify key factors that affect the decision to manage a wildfire. A total of 110 descriptive factors categories were identified. These were classified into six key thematic groups, which addressed specific decision considerations. This nexus of factors and decision pathways formed what we describe as the ‘Managed Fire Decision Framework’, which contextualizes important pressures, barriers, and facilitators related to managed wildfire decision-making. The most prevalent obstacles to managing wildfire were operational concerns and risk aversion. The factor most likely to support managing a fire was the decision maker’s desire to see the strategy be implemented. Ultimately, we found that the managed fire decision-making process is extremely complex, and that this complexity may itself be a barrier to its implementation.

Synthesis/Technical Report icon

Climate change on the range: Monitoring and adaptation for sustainability

View synthesis.

In this document, authors used the Intergovernmental Panel on Climate Change (IPCC) reports over the past decade, as well as studies from other experts in the field, to summarize projected changes to U.S. rangelands. Since U.S. rangelands are so diverse, authors divided the country into five eco-regions, organized into three separate sections: Southwest North America (including the desert Southwest and Great Basin); the Great Plains; and the Gulf Coast (including Florida coastal rangelands and the Texas coastal prairies).

Synthesis/Technical Report icon

Adapting western North American forests to climate change and wildfires: 10 common questions

View synthesis.

This paper review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified?

Synthesis/Technical Report icon

Characterizing ecoregions and montane perennial watersheds of the Great Basin

View report.

Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. It also describes the resulting database and the data sources. Furthermore, it summarizes information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems.

 

Synthesis/Technical Report icon

Geomorphic sensitivity and ecological resilience of Great Basin streams and riparian ecosystems

View the report.

A new USDA Forest Service, Rocky Mountain General Technical Report on geomorphic sensitivity and ecological resilience of Great Basin streams and riparian ecosystems is now available. It provides the information needed to evaluate the sensitivity and resilience of Great Basin watersheds based on the characteristics of the streams and riparian ecosystems, determine how they are likely to respond to disturbance and management actions, and prioritize areas for conservation and restoration actions.

A website has been developed that provides an overview of GTR-426 and has downloadable, autofill forms for implementing the assessment.

Synthesis/Technical Report icon

Application of the threat-based model framework in the BLM land health assessment and evaluation

View technical note.

The threat-based model approach uses simplified ecosystem models to identify and map primary threats and determine potential management interventions. The study team found that the threat-based model supported the  findings from the BLM’s land health evaluation for the O’Keeffe allotment. The threat-based model approach offered another line of evidence in assessing upland standards. It also proved to be a valuable tool for  communicating with stakeholders, as it provided a spatial depiction of habitat condition and threats through maps and a framework to link threats to management actions. The BLM needs to further apply and study this methodology, but there is potential to use the threat-based model to streamline the land health evaluation process and provide a consistent assessment framework across public and private lands.

Synthesis/Technical Report icon

A novel approach for estimating nonforest carbon stocks in support of forest plan revision

View report.

Globally, more carbon is stored in the soil than in any other terrestrial form (Brevik 2013; Woodall et al. 2015). Soil organic carbon (SOC) may contain more than three times the carbon found in the atmosphere and terrestrial vegetation combined (Qafoku 2014). Soil organic carbon is derived from soil organic matter (i.e., decomposition of living organisms) and is generally about 58 percent of soil organic matter by weight (Pribyl 2010). Storage of SOC is limited by soil physical and chemical composition as well as microbial and plant community types, all of which are determined by soil moisture and temperature (Emmet et al. 2004; Kardol et al. 2010).

Synthesis/Technical Report icon

Literature review and framework for decision factors that may influence the utilization of managed wildfire on federal lands

View synthesis.

This review spanned 1976 to 2013 and used thematic coding to identify key factors that affect the decision to manage a wildfire. A total of 110 descriptive factors categories were identified. These were classified into six key thematic groups, which addressed specific decision considerations. This nexus of factors and decision pathways formed what we describe as the ‘Managed Fire Decision Framework’, which contextualizes important pressures, barriers, and facilitators related to managed wildfire decision-making. The most prevalent obstacles to managing wildfire were operational concerns and risk aversion. The factor most likely to support managing a fire was the decision maker’s desire to see the strategy be implemented. Ultimately, we found that the managed fire decision-making process is extremely complex, and that this complexity may itself be a barrier to its implementation.

Synthesis/Technical Report icon

Climate change and western fires: A 3-part series from Ecological Applications

View articles.

Fire exclusion caused profound changes in many western North American forested landscapes, leaving them vulnerable to seasonal increases in drought and wildfire. As climate warms, the likelihood of severe, large-scale disturbance increases. There is generally strong agreement that wildfires, insects and disease are rapidly changing western landscapes and that the pace and scale of adaptive management is insufficient. However, confusion persists regarding the need for proactive management. In three articles, this Invited Feature evaluates the strength of scientific evidence regarding changing forest conditions, fire regimes, and science-based strategies for adapting western forests to climate change and future wildfires.

Synthesis/Technical Report icon

We can better manage ecosystems by connecting solutions to constraints

View article.

Here we synthesize and present a portfolio of broad structured approaches and specific actions that can be used to advance restoration of plant-invaded wetlands in a diversity of contexts immediately and over the long-term, linking these solutions to the constraints they best address. These solutions can be used by individual managers to chart a path forward when they are daunted by potentially needing to pivot from more familiar management actions to increase efficiency and efficacy in attaining restoration goals. In more complex collaborations with multiple actors, the shared vocabulary presented here for considering and selecting the most appropriate solution will be essential. Of course, every management context is unique (i.e., different constraints are at play) so we advocate that involved parties consider a range of potential solutions, rather than either assuming any single solution to be universally optimal or relying on a solution simply because it is familiar and feasible. Moving rapidly to optimally effective invasive plant management in wetlands may not be realistic, but making steady, incremental progress by implementing appropriate solutions based on clearly identified constraints will be critical to eventually attaining wetland restoration goals.

Narrow your search

Can't find what you need?

Stay Connected