Synthesis / Tech Report

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Shifting global fire regimes: Lessons from reburns and research needs

View synthesis.

This study reviews published studies on reburns in fire-adapted ecosystems of the world, including temperate forests of North America, semi-arid forests and rangelands, tropical and subtropical forests, grasslands and savannas, and Mediterranean ecosystems. To date, research on reburns is unevenly distributed across the world with a relative abundance of literature in Australia, Europe and North America and a scarcity of studies in Africa, Asia and South America. This review highlights the complex role of repeated fires in modifying vegetation and fuels, and patterns of subsequent wildfires. In fire-prone ecosystems, the return of fire is inevitable, and legacies of past fires, or their absence, often dictate the characteristics of subsequent fires.

Open book with lines simulating text on left and right pages

Common ground regarding the role of wildfire in forested landscapes of the western US

View report.

A group of people knowledgeable about wildland fire have produced a 52-page document that attempts to assemble and summarize areas of agreement and disagreement regarding the management of forested areas in the western United States. Calling themselves the Fire Research Consensus Working Group, they looked for areas of common ground to provide insights for scientists and land managers with respect to recent controversies over the role of low-, moderate-, and high-severity fires.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Hard-copy resources available to you

Want to beef-up your library? You can request the following resources in hard copy from Génie (listed in order of most recent publication date). You can also add them to your electronic library, just follow the links for downloads.

Fire patterns in piñon and juniper land cover types in the Semiarid Western United States from 1984 through 2013, 2018. RMRS-GTR-372

Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions, 2018. USGS Circular 1426

Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions, 2017. RMRS-GTR-360

Pocket Guide to Sagebrush Birds, reprint, 2017. A partnership between Rocky Mountain Bird Observatory and PRBO Conservation Science

Pocket Guide to Sagebrush, reprint, 2017. Made possible by USU, NRCS, USFS, BLM, PRBO Conservation Science, NDOW, GBFSE

Ecohydrologic impacts of rangeland fire on runoff and erosion: A literature synthesis, 2016. RMRS-GTR-351

Using resilience and resistance concepts to manage threats to sagebrush ecosystems, Gunnison sage-grouse, and Greater sage-grouse in their eastern range: A strategic multi-scale approach, 2016. RMRS-GTR-356

A field guide for rapid assessment of post-wildfire recovery potential in sagebrush and pinon-juniper ecosystems in the Great Basin: Evaluating resilience to disturbance and resistance to invasive annual grasses and predicting vegetation response, 2015. RMRS-GTR-338

A review of fire effects on vegetation and soils in the Great Basin Region: Response and site characteristics, 2013. RMRS-GTR-308

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Fire regimes of mountain big sagebrush communities – Review from FEIS

View synthesis.

This synthesis summarizes information available in the scientific literature on historical patterns and contemporary changes in fuels and fire regimes in mountain big sagebrush communities. This literature suggests that presettlement fires in the sagebrush biome were both lightning- and human-caused. Peak fire season occurred between April and October and varied geographically. Wildfires were high-severity, stand-replacement fires. Fire frequency estimates range from decades to centuries, depending on the applicable scale, methods used, and metrics calculated. Fire frequency was influenced by site characteristics. Because mountain big sagebrush communities occur over a productivity gradient driven by soil moisture and temperature regimes, fire regimes likely varied across the gradient, with more frequent fire on more productive sites that supported more continuous fine fuels. Sites dominated by mountain big sagebrush burned more frequently than sites dominated by Wyoming big sagebrush, because the former tend to be more productive. Mountain big sagebrush communities adjacent to fire-prone forest types (e.g., ponderosa pine) may have had more frequent fires than those adjacent to less fire-prone types (e.g., pinyon-juniper) and those far from forests and woodlands. Most fires were likely small (less than ~1,200 acres (~500 ha)), and large fires (>24,000 acres (10,000 ha)) were infrequent. Historically, large fires in big sagebrush were most likely after one or more relatively wet years or fire reseasons that favored growth of associated grasses, allowing fine fuels to accumulate and become more continuous.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Fuels guide and database for intact and invaded big sagebrush ecological sites – User manual

View guide.

The Fuels Guide and Database (FGD) is intended to provide fuel loading and vegetation information for big sagebrush (Artemisia tridentata) ecological sites in the Morley Nelson Snake River Birds of Prey National Conservation Area (NCA) in southern Idaho. Sagebrush ecosystems in the NCA and throughout much of the Great Basin are highly influenced by non-native plants that alter successional trajectories and promote frequent wildfires, especially due to fine-fuel loadings that are highly variable over time and space. These dynamic fuel conditions can increase uncertainty when attempting to project fire risk and fire behavior. The FGD was developed to help quantify and assess these dynamic fuel loadings, and it provides access to fuels data across a range of conditions, from relatively intact sagebrush-bunchgrass communities to degraded communities dominated by nonnative annual grasses and forbs. The FGD can be queried for a variety of environmental conditions, and it provides tabular data, reports, and photographic records of fuels based on user queries. This report describes the FGD, including overall data content and data-collection methods, as well as instructions for installing and using the database.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Do post-fire fuel treatments and annual grasses interact to affect fire regimes in the Great Basin?

View report.

To assess the effects of aerial and drill seeding on plant community trajectories, fuel composition, and fire regimes, this study collected geospatial datasets spanning 209,000 ha of sagebrush steppe on BLM land in southern Idaho. In the field, 68 sites were sampled for fuel and plant community composition in 2014 and 2015 across areas that had burned 1-6 times and had no, aerial, drill, or aerial + drill seeding. The study found that 1) fire and rehabilitation shaped plant communities, 2) drill seeding after multiple fires in dry, low elevation sites prevented conversion to cheatgrass-dominated systems, 3) drill seeded sites had fewer fires and increased in fire frequency more slowly than aerial seeded sites, 4) the on-the-ground conditions that led to the decision to aerially seeding after a fire led to more frequent and numerous fires.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Wildland fire smoke health effects on wildland firefighters and the public

View report.

Using epidemiology studies to understand the exposure-response relationship for PM, this study found that firefighters were at an increased risk for long-term health effects from smoke exposure. The risk for lung cancer mortality increases nearly linearly with exposures over time and is more strongly influenced by exposure duration than are the risks of death from cardiovascular or ischemic heart disease. On the other hand, the risk of cardiovascular mortality rises steeply for doses in the range we estimated for firefighter exposures but flattens out at higher exposures to PM. The data presented in this paper clearly identify the crews and activities most likely to exceed occupational exposure limits and firefighters may have a an increased health risk from smoke exposures.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

How vegetation recovery and fuel conditions in past fires influences fuels and future fire management in five western US ecosystems

View report.

Mixed severity wildfires burn large areas in western North America forest ecosystems in most years and this is expected to continue or increase with climate change. Little is understood about vegetation recovery and changing fuel conditions more than a decade post-fire because it exceeds the duration of most studies of fire effects. We measured plant species composition, conifer seedling regeneration, fuel loads, and ground cover at 15 wildfires that burned 9-15 years previous in five western U.S. vegetation types distributed across eight states including Alaska.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

USGS Sage-grouse and sagebrush ecosystem research annual report for 2018

View report.

This report contains descriptions of USGS sage-grouse and sagebrush ecosystem research projects that are ongoing or were active during 2018 and is organized into five thematic areas: Fire, Invasive Species, Restoration, Sagebrush, Sage-Grouse, and Other Sagebrush-Associated Species; and Climate and Weather.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Do perennial bunchgrasses exclude cheatgrass in post-fire rehabilitation?

View report.

Data on plant cover and density was collected on 67 sites in a 209,000 ha study area that varied in fire and post-fire rehabilitation history along gradients in elevation, soil texture, and precipitation. Multiple linear regression indicated significant inverse relationships between B. tectorum and both P. secunda and A. cristatum, but P. secunda had suppressed B. tectorum cover and density better than A. cristatum. A nonparametric multiple regression analyzing the effect of 86 abiotic and biotic independent variables indicated that elevation, mid to late season native perennial bunchgrasses, and the number of post-fire rehabilitation treatments (for B. tectorum cover) or time since most recent rehabilitation (for B. tectorum density) explained the most variation in Bromus tectorum suppression across the landscape.

Narrow your search

Resource Types
No results found
Synthesis / Tech Report (229)
Article / Book (9)
Field Guide (4)
Story Map (2)
Fact Sheet / Brief (1)
Topic
No results found
Case Study (4)
Climate & Fire & Adaptation (28)
Decision Support (9)
Fire & Economics (13)
Fire Behavior (23)
Fire Communication & Education (11)
Fire Ecology & Effects (41)
Fire History (9)
Fire Policy (11)
Fire Regimes (22)
Firefighter Safety (7)
Fuels & Fuel Treatments (69)
Human Dimensions of Fire (7)
Invasive Species (32)
Landscape Analysis (10)
Monitoring (7)
Post-fire Environment & Management (19)
Rehabilitation (7)
Resistance & Resilience (12)
Restoration (32)
Sage-grouse (26)
Sagebrush (35)
Smoke (8)
Targeted Grazing (7)
Traditional Ecological Knowledge (2)
Weather Effects (4)
Wildland Urban Interface (7)

Stay Connected