Climate & Fire & Adaptation
View article.
The United States Forest Service 2012 Planning Rule prioritizes making lands resilient to climate change. Although researchers have investigated the history of “resilience” and its multiple interpretations, few have examined perceptions or experiences of resource staff tasked with implementing resilience. This study interviewed Forest Service staff in the Southwestern Region to evaluate how managers and planners interpret resilience as an agency strategy, execution of resilience in management, and climate change’s impact on perception of resilience. Interviewees identified resilience as a main driver of agency response to land management but, when applying the concept, experienced barriers including ambiguity; scale; management specificity versus broad, adaptive landscape approach; and lack of metrics or examples. Interviewees found restoring ecosystem function to promote resilience while planning for future changed landscapes difficult. They desired landscape-scale collaboration to understand how to operationalize the resilience directive. Our findings revealed obstacles and opportunities for resilience in a managerial context.
View article.
This study reports an automated method of mapping rangeland fractional component cover over a large portion of the northern Great Basin, from 1986 to 2016 using a dense Landsat imagery time series. Over the 30‐yr period, shrub cover declined and bare ground increased. While few pixels had >10% cover change, a large majority had at least some change. All fractional components had significant spatial relationships with water year precipitation (WYPRCP), maximum temperature (WYTMAX), and minimum temperature (WYTMIN) in all years. Shrub and sagebrush cover in particular respond positively to warming WYTMIN, resulting from the largest increases in WYTMIN being in the coolest and wettest areas, and respond negatively to warming WYTMAX because the largest increases in WYTMAX are in the warmest and driest areas. The trade‐off of lowering temporal density against removing cloud‐contaminated years is justified as temporal density appears to have only a modest impact on trends and climate relationships until n ≤ 6, but multi‐year gaps are proportionally more influential. Gradual change analysis is likely to be less sensitive to n than abrupt change. These data can be used to answer critical questions regarding the influence of climate change and the suitability of management practices.
View article.
A new study shows burned leaf litter and other biomaterials can leach these molecules—called pyrogenic carbon—into fresh water where they react with sunlight. That means pyrogenic carbon in our waterways could degrade into carbon dioxide faster than previously suggested, providing an unexpected source of this greenhouse gas to the atmosphere, according to the researchers.
View article.
In common gardens at two sites over two years differences in both ploidy type and genetic variation within ploidy were observed in phenology, morphology, and production traits on 57 octoploid and 52 tetraploid basin wildrye from the Intermountain West. Octoploids had larger leaves, longer culms, and greater crown circumference than tetraploids but the numerical ranges of plant traits and their source climates overlapped between ploidy types. Still, among populations octoploids often had greater genetic variation for traits and occupied more diverse climates than tetraploids. The link between genetic traits and seed source climates suggests climate driven natural selection and adaptive evolution in basin wildrye. The more diverse climates occupied by octoploids and higher trait variation suggests a higher capacity for ecological differentiation than tetraploids in the Intermountain West.
Humanity’s fire practices are creating the fire equivalent of an ice age. Our shift from burning living landscapes to burning lithic ones is affecting all aspects of Earth. Presenter is Stephen Pyne.
Visit conference website.
This year’s conference, Discover Your Role: Reducing Wildland Fire Risk will provide an in-depth exploration of how community members across the spectrum can effectively contribute to better fire outcomes and provide community wildfire resilience leaders with new knowledge and tools for engaging partners and the public.
View report.
The South-Central Oregon Adaptation Partnership (SCOAP) was developed to identify climate change issues relevant for resource management on federal lands in south-central Oregon. This science-management partnership assessed the vulnerability of natural resources to climate change and developed adaptation options that minimize negative impacts of climate change and facilitate transition of diverse ecosystems to a warmer climate. The vulnerability assessment shows that the effects of climate change on hydrology in south-central Oregon will be highly significant. Decreased snowpack and earlier snowmelt will shift the timing and magnitude of streamflow; peak flows will be higher, and summer low flows will be lower. Projected changes in climate and hydrology will have far-reaching effects on aquatic and terrestrial ecosystems, especially as frequency of extreme climate events (drought, low snowpack) and ecological disturbances (flooding, wildfire, insect outbreaks) increase.
View user guide.
Decision makers need better methods for identifying critical ecosystem vulnerabilities to changing climate and fire regimes. Climate-wildfire-vegetation interactions are complex and hinder classification and projection necessary for development of management strategies. One such vulnerability assessment (VA) is FireCLIME VA, which allows users to compare management strategies under various climate scenarios and gauge the potential effectiveness of those strategies for reducing undesirable impacts of climate on wildfire regimes and resulting impacts of wildfire on natural ecosystems. Developed as part of the SW FireCLIME science-management partnership, FireCLIME is meant to be quick, flexible, and amendable to a range of data inputs (literature review, expert, and modeling or monitoring activities). These inputs allow users to easily compare various fire-climate outcomes for one or more ecosystems of interest. Users can use literature, hypothetical scenarios, or quantitative data to implement the FireCLIME VA tool. This tool, unlike other vulnerability assessment, is best used iteratively to explore a range of possible scenarios and management strategies.
Access SAVS Tool.
The Forests Service, Rocky Mountain Research Station has developed a System for Assessing Vulnerability of Species (SAVS) that quantifies the relative impact of expected climate change effects for terrestrial vertebrate species.
Access the Climate Toolbox website.
A collection of web tools for visualizing past and projected climate and hydrology of the contiguous United States of America and for addressing questions related to agriculture, climate, fire conditions, and water.