Climate & Fire & Adaptation

Abstract icon

Nevada Society for Range Management Suggested Reading – Spring 2021

View abstracts.

These abstracts of recent papers on rangeland management in the West were prepared by Charlie Clements, Rangeland Scientist, USDA Agricultural Research Service, Reno, NV.

Journal article icon

Climate change and fire suppression: Drivers of fire regimes at actionable scales

View article.

The relative influence of climate change and fire exclusion vary with soil moisture, which itself is influenced by climate and local topography:

  • Burn probability along a soil aridity gradient for Trail Creek and Johnson Creek, with and without climate change, and with and without fire exclusion. Climate change increased burn probability by drying fuels in the most mesic locations (i.e., locations where temporally averaged soil moisture was high; see difference between blue and orange lines, highlighted by the upward pointing arrow). In the most arid locations, climate change promoted drought stress and reduced fine fuel loads, which in turn reduced burn probability.
  • Climate change increased burn probability and led to larger, more frequent fires in locations where soil aridity was relatively low (i.e., time-averaged soil moisture >35%).
  • In the most arid locations (i.e., time-averaged soil moisture <25%), climate change promoted drought stress and reduced fine fuel loads, which in turn reduced burn probability.
  • In locations with intermediate soil aridity (25-35%), the effects of climate change and fire suppression varied in response to local trade-offs between aridity (which makes fuels more flammable) and productivity (which increases fuel loads).

Even within watersheds, at fine scales, risk management must be spatially and temporally explicit to optimize effects

 

Journal article icon

Changes in fire weather climatology under 1.5 C and 2.0 C warming

View article.

The 2015 Paris Agreement led to a number of studies that assessed the impact of the 1.5 °C and 2.0 °C increases in global temperature over preindustrial levels. However, those assessments have not actively investigated the impact of these levels of warming on fire weather. In view of a recent series of high-profile wildfire events worldwide, we access fire weather sensitivity based on a set of multi-model large ensemble climate simulations for these low-emission scenarios. The results indicate that the half degree difference between these two thresholds may lead to a significantly increased hazard of wildfire in certain parts of the world, particularly the Amazon, African savanna and Mediterranean. Although further experiments focused on human land use are needed to depict future fire activity, considering that rising temperatures are the most influential factor in augmenting the danger of fire weather, limiting global warming to 1.5 °C would alleviate some risk in these parts of the world.

Webinar, video, audio icon

Managing post-fire, climate-induced vegetation transitions

Webinar recording.

Warmer, drier and longer fire seasons in the Northwest have led to larger and more frequent wildfires. These changes in fire activity, combined with warmer and drier post-fire conditions, have in turn led to growing concern that in some areas of the Northwest, particularly in forests and shrublands east of the Cascade Range, existing plant communities may face difficulty regrowing and persisting following fire.

Synthesis/Technical Report icon

Addressing 21st century conservation challenges to benefit our people, economy, and environment

View report.

Today, American conservation confronts the climate crisis, the biodiversity crisis, a global pandemic, skeptics of these threats, a massive federal deficit, economic hardship, social injustice, and political divisions that threaten our democracy. Yet, at the same time, people continue to explore new ways to work together to use science, collaboration, and innovation to advance efforts to protect our environment, conserve our natural resource legacy, and broaden its benefits for all Americans.

Synthesis/Technical Report icon

Advancing the national fish, wildlife, and plants climate adaptation strategy into a new decade

View report.

In 2009, at the behest of Congress, the Council on Environmental Quality (CEQ) and the US Department of the Interior (DOI) were asked to develop a national, government-wide climate adaptation strategy for fish, wildlife, plants, and ecosystems. In doing so, the Federal Government recognized the immensity of climate change impacts on the Nation’s vital natural resources, as well as the critical need for partnership among federal, state, and tribal fish and wildlife agencies. More than 90 diverse technical, scientific, and management experts from across the country participated in the development and, in 2012, the National Fish, Wildlife, and Plants Climate Adaptation Strategy (Strategy) was published. Designed to “inspire and enable natural resource managers, legislators, and other decision makers to take effective steps towards climate change adaptation over the next five to ten years,” the time has come for the natural resource community to consider the impact of the Strategy, while identifying the necessary evolution of it, to continue to effectively safeguard the Nation’s natural resources in a changing climate.

Journal article icon

How climate change and fire exclusion drive wildfire regimes at actionable scales

View article.

Extreme wildfires are increasing in frequency globally, prompting new efforts to mitigate risk. The ecological appropriateness of risk mitigation strategies, however, depends on what factors are driving these increases. While regional syntheses attribute increases in fire activity to both climate change and fuel accumulation through fire exclusion, they have not disaggregated causal drivers at scales where land management is implemented. Recent advances in fire regime modeling can help us understand which drivers dominate at management-relevant scales. We conducted fire regime simulations using historical climate and fire exclusion scenarios across two watersheds in the Inland Northwestern U.S., which occur at different positions along an aridity continuum. In one watershed, climate change was the key driver increasing burn probability and the frequency of large fires; in the other, fire exclusion dominated in some locations. We also demonstrate that some areas become more fuel-limited as fire-season aridity increases due to climate change. Thus, even within watersheds, fuel management must be spatially and temporally explicit to optimize effectiveness. To guide management, we show that spatial estimates of soil aridity (or temporally averaged soil moisture) can provide a relatively simple, first-order indicator of where in a watershed fire regime is climate vs. fuel-limited and where fire regimes are most vulnerable to change.

Journal article icon

Native plants in urban landscapes: A biological imperative

View article.

Urban populations rely on a suite of ecosystem services generally provided by the ecological function of natural areas. But the expansion of urban environments and growing suburban or exurban neighborhoods often necessitates destruction of those natural areas for development supporting a growing urban populace. Ecological impacts from development reduce regional biodiversity and negatively affect the ability of remaining natural areas to provide goods and services critical to people. Secondary impacts to biodiversity also occur at broad geographic scales through commodity production supporting urban centers. For example, agricultural production often involves creating agroeconomic systems based largely on farming a limited number of species, and commonly relegates biological diversity to small patches of land deemed unsuitable for crops. Such practices exacerbate the negative biological effects inherent in urban development and drastically increase the need for urban populations to address biological diversity within municipalities. Residents are becoming progressively knowledgeable about environmental issues and are expressing values and concerns to local and regional managing agencies. Governments are responding to public pressure through recommendations intended to reduce resource use, improve wildlife habitat, and provide a local aesthetic. Although the appropriateness of native plants in urban settings is often questioned, the use of regionally specific native vegetation is identified as one method to meet those recommendations. Native plants as primary landscape elements have the added benefit of increasing biodiversity and creating environments capable of providing ecosystem goods and services within urban environments.

Webinar, video, audio icon

Using information from global climate models to inform policymaking

Webinar recording.

Description: Climate change is a risk management challenge for society because of the uncertain consequences for natural and human systems across decades to centuries. Climate-related science activities within the USGS emphasize research on adaptation to climate change. This research helps inform adaptive management processes and planning activities within other DOI bureaus and by DOI stakeholders.

Global climate models are sophisticated numerical representations of the Earth’s climate system. Research groups from around the world regularly participate in a coordinated effort to produce a suite of climate models. This global effort provides a test bed to assess model performance and analyze projections of future change under various prescribed climate scenarios. These climate scenarios describe a plausible future outcome associated with a specific set of societal actions. Examining a range of projected climate outcomes based on multiple scenarios is a recommended best practice because it allows decision makers to better consider both short- and long-term risks and opportunities.

Presenter: Adam Terando, Research Ecologist, Southeast Climate Adaptation Science Center

Webinar, video, audio icon

Ecological drought: An introduction

Webinar recording.

Introducing ecological drought as a scientific concept distinct from other definitions of drought, this webinar explores recent research on the topic, including transformational drought impacts and ecological tipping points.

Presenters: Dr. Shelley Crausbay, Senior Scientist, Conservation Science Partners; Dr. Amanda Cravens, Research Social Scientist, USGS

Narrow your search

Resource Types
No results found
Article / Book (102)
Webinar (42)
Synthesis / Tech Report (29)
Fact Sheet / Brief (20)
Abstract (11)
Tool (9)
Conference / Meeting (6)
Field Tour / Workshop (4)
Field Guide (3)
Video (3)
Topic
No results found
Carbon (1)
Case Study (3)
Climate & Fire & Adaptation (236)
Decision Support (9)
Fire & Economics (3)
Fire Behavior (5)
Fire Communication & Education (16)
Fire Ecology & Effects (12)
Fire History (5)
Fire Policy (1)
Fire Regimes (13)
Fire Risk (3)
Firefighter Safety (1)
Fuels & Fuel Treatments (17)
Human Dimensions of Fire (5)
Invasive Species (12)
Landscape Analysis (3)
Monitoring (1)
Post-fire Environment & Management (12)
Rehabilitation (1)
Resistance & Resilience (10)
Restoration (17)
Sage-grouse (2)
Sagebrush (16)
Smoke (2)
Targeted Grazing (1)
Traditional Ecological Knowledge (2)
Weather Effects (11)
Wildland Urban Interface (7)

Stay Connected