Fire Ecology & Effects

Tool icon

Wildland Fire Learning Portal

Access courses.
These online courses were developed by Wildland Fire Management Research, Development, and Application, Fire Regime Condition Class, LANDFIRE, National Wildfire Coordinating Group, and National Advanced Fire and Resource Institute.

Journal article icon

Short- and long-term effects of ponderosa pine fuel treatments intersected by the Egley Fire Complex, OR

View article.

Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after the 2007 Egley Fire Complex in Oregon, USA. We also assessed short- and long-term fuel treatment impacts on field-measured attributes one and nine years post fire.

Webinar, video, audio icon

Ecology, history, ecohydrology, and management of PJ woodlands in the Great Basin

Webinar recording.

Rick Miller, Professor Emeritus, OSU, discusses the intent and goals of his latest publication, The Ecology, History, Ecohydrology, and Management of Pinyon and Juniper Woodlands in the Great Basin and Northern Colorado Plateau in the Western United States. This includes 1) Describing the the woodlands and the vast variation across the GB and CP, 2) Telling the story of their history and variables influencing woodland expansion and contraction, and 3) Interpretation of the wide variation in responses and the variables influencing ecosystem response to restoration.

Journal article icon

Longer-term post-fire succession on Wyoming big sagebrush steppe

Read article.

This study assessed plant community succession following prescribed fire on ungrazed Wyoming big sagebrush steppe, eastern Oregon. Herbaceous yield, vegetation canopy cover and density were compared between treatments after fire (2003–18). Herbaceous yield in the Burn treatment was about double the control for most of the study period. Prior to fire, native perennials comprised 90–95% of herbaceous yield. After fire, native perennials represented 78% (range 67–93%) and exotic annuals 22% (range 7–33%) of total yield. Exotic annuals increased after fire and responded in two stages. In the first 8 years after fire, desert alyssum dominated the annual plant composition. In the last half of the study, cheatgrass co-dominated the annual component with alyssum. Sagebrush recovery was slow and we estimated sagebrush cover would return to pre-burn levels, at the earliest, in 115 years. Burning Wyoming big sagebrush steppe would be detrimental to sagebrush-obligate wildlife for an extended time period, because of lost cover and structure provided by sagebrush. The additional forage provided on burned areas may give livestock manager’s greater flexibility to rest or defer unburned habitat for wildlife species of critical concern.

Journal article icon

Post-fire aspen regeneration varies in response to winter precipitation

Access article.

This study examined post-fire aspen stands across a regional climate gradient spanning from the north-central Great Basin to the northeastern portion of the Greater Yellowstone Ecosystem (USA). We investigated the influence of seasonal precipitation and temperature variables, snowpack, and site conditions (e.g. browsing levels, topography) on density of post-fire aspen regeneration (i.e. all small trees ha−1) and recruitment (i.e. small trees ≥2 m tall ha−1) across 15 fires that occurred between 2000 and 2009. The range of post-fire regeneration (2500–71,600 small trees ha−1) and recruitment (0–32,500 small trees ≥2 m ha−1) densities varied widely across plots. Linear mixed effects models demonstrated that both response variables increased primarily with early winter (Oct-Dec) precipitation during the ‘fire-regen period’ (i.e., fire year and five years after fire) relative to the 30-year mean. The 30-year mean of early winter precipitation and fire-regen period snowpack were also positively related to recruitment densities. Both response variables decreased with higher shrub cover, highlighting the importance of considering shrub competition in post-fire environments. Regeneration and recruitment densities were negatively related to proportion browsed aspen leaders and animal pellet densities (no./m2), respectively, indicating the influence of ungulate browsing even at the relatively low levels observed across sites. A post-hoc exploratory analysis suggests that deviation in early winter precipitation during the fire-regen period (relative to 30-year means) varied among sites along directional gradients, emphasizing the need to consider multiple spatiotemporal scales when investigating climate effects on post-fire successional dynamics.

Journal article icon

Evaluation of remotely sensed indices for quantifying burn severity in arid ecoregions

View paper.

It is sometimes assumed the sparse and low statured vegetation in arid systems would limit the effectiveness of two remote-sensing derived indices of burn severity: the difference Normalised Burn Ratio (dNBR) and relativised difference Normalised Burn Ratio (RdNBR). We compared the relationship that dNBR, RdNBR and a ground-based index of burn severity (the Composite Burn Index, CBI) had with woody cover and woody density 1 year after burning in five fires that occurred in the Mojave Desert during 2005. Statistically, dNBR and RdNBR were both effective measures of severity in all three elevation zones; woody cover and density had steep exponential declines as the values of each remote-sensing index increased. We found though that dNBR was more ecologically interpretable than RdNBR and will likely be of most relevance in the Mojave Desert.

Synthesis/Technical Report icon

Testing and extending models of fire-induced tree mortality across the US

View study.

Managers can use the First Order Fire Effects Model (FOFEM) when planning prescribed burns to achieve mortality-related objectives and for creating post-fire salvage guidelines to predict which trees will die soon after fire. Of the preceding observations, 13,460 involved trees that burned twice. Researchers evaluated the post-fire tree mortality models in FOFEM for 45 species. Approximately 75% of models tested in the FOFEM had either excellent or good predictive ability. Models performed best for thick-barked conifer species. Models tend to overpredict mortality for conifers with moderate bark thickness and underpredict mortality in primarily angiosperms or thin-barked conifers. Managers who rely on these models can use the results to (1) be aware of the uncertainty and biases in model predictions and (2) choose a threshold for assigning dead and live trees that optimizes certainty in either identifying or predicting live or dead individuals.

Journal article icon

Soil carbon and nitrogen eroded after severe wildfire and erosion mitigation treatments

View article.

Erosion of soil carbon (C) and nitrogen (N) following severe wildfire may have deleterious effects on downstream resources and ecosystem recovery. Although C and N losses in combustion and runoff have been studied extensively, soil C and N transported by post-fire erosion has rarely been quantified in burned landscapes. To better understand the magnitude and temporal pattern of these losses, we analysed the C and N content of sediment collected in severely burned hillslopes and catchments across the western USA over the first 4 post-fire years.

Synthesis/Technical Report icon

Wildland fire impacts on water yield across the contiguous US

View report.

Wildland fires in the contiguous United States (CONUS) have increased in size and severity, but much remains unclear about the impact of fire size and burn severity on water supplies used for drinking, irrigation, industry, and hydropower. While some have investigated large-scale fire patterns, long-term effects on runoff, and the simultaneous effect of fire and climate trends on surface water yield, no studies account for all these factors and their interactions at the same time. In this report, we present critical new information for the National Cohesive Wildland Fire Management Strategy—a first-time CONUS-wide assessment of observed and potential wildland fire impacts on surface water yield. First, we analyzed data from 168 fire-affected locations, collected between 1984 and 2013, with machine learning and used climate elasticity models to correct for the local climate baseline impact.

Synthesis/Technical Report icon

12 Years of Wildland fire science at the USGS: Publications, 2006–17

Access the synthesis.

In this report, we identify and characterize scientific literature produced by USGS scientists during 2006–17 that addresses topics associated with wildland fire science. Our goals were to (1) make the most complete list possible of product citations readily available in an organized format, and (2) use bibliometric analysis approaches to highlight the productivity of USGS scientists and the impact of contributions that the Bureau has provided to the scientific, land management, and fire management communities.

Narrow your search

Stay Connected