Fire History
View article.
For this study, we used big sagebrush (Artemisia tridentata) as a model species to explore whether including human‐induced factors improves the fit of the species distribution models (SDM). Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: −6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: −47.9%, −41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions.
View webinar recording.
There is wide agreement that prescribed fire is essential and under-utilized for restoring and maintaining natural ecosystem function, sustaining native wildlife populations, and mitigating wildfire hazard. There is less agreement on the history of fire, specifically the degree to which historic fire regimes and the natural communities that depend on them are essentially anthropogenic as opposed lightning-initiated as a function of climate and topography. This presentation provides an over-simplified summary of the two positions and present examples of more comprehensive research approaches that embrace data over dogma.
View study.
This study used pollen and high-resolution charcoal analysis of lake sediment to reconstruct a 7600 yr vegetation and fire history from Anthony Lake, located in the Blue Mountains of northeastern Oregon. From 7300 to 6300 cal yr BP, the forest was composed primarily of Populus , and fire was common, indicating warm, dry conditions. From 6300 to 3000 cal yr BP, Populus declined as Pinus and Picea increased in abundance and fire became less frequent, suggesting a shift to cooler, wetter conditions. From 3000 cal yr BP to present, modern-day forests composed of Pinus and Abies developed, and from 1650 cal yr BP to present, fires increased. We utilized the modern climate-analogue approach to explain the potential synoptic climatological processes associated with regional fire. The results indicate that years with high fire occurrence experience positive 500 mb height anomalies centered over the Great Basin, with anomalous southerly component of flow delivering dry air into the region and with associated sinking motions to further suppress precipitation. It is possible that such conditions became more common over the last 1650 cal yr BP, supporting an increase in fire despite the shift to more mesic conditions.
View synthesis.
This study reviews published studies on reburns in fire-adapted ecosystems of the world, including temperate forests of North America, semi-arid forests and rangelands, tropical and subtropical forests, grasslands and savannas, and Mediterranean ecosystems. To date, research on reburns is unevenly distributed across the world with a relative abundance of literature in Australia, Europe and North America and a scarcity of studies in Africa, Asia and South America. This review highlights the complex role of repeated fires in modifying vegetation and fuels, and patterns of subsequent wildfires. In fire-prone ecosystems, the return of fire is inevitable, and legacies of past fires, or their absence, often dictate the characteristics of subsequent fires.
The Reburn Project was motivated by a need to better understand wildfires as a type of fuel reduction treatment and to assess the impacts of fire suppression on forested landscapes. The original JFSP task statement (Influence of past wildfires on wildfire behavior, effects, and management) was created to inform the National Cohesive Wildland Fire Management Strategy and to address how past wildfires influence subsequent wildfire spread and severity as well as to evaluate how past wildfires may support different fire management strategies. Our study focused on three study areas, located in the inland Pacific Northwest, central Idaho and interior British Columbia. Each study area was centered on a recent, large wildfire event in montane, forested landscapes.We first evaluated fire-on-fire interactions between past wildfires and subsequent large fire events (see Stevens-Rumann et al. 2016). Next, we created a landscape fire simulation tool that allowed us to explore the impact of fire management on the patterns of forest vegetation and fuels across landscapes. To do this, we created an iterative tool that uses historical ignition and weather data to evaluate potential burn mosaics compared to actual pre-wildfire landscapes under different wildfire management strategies.
View article.
We worked with the Navajo Nation Forestry Department to evaluate the historical role of fire on a 50 km2 landscape bisected by a natural mountain pass. The landscape experienced frequent fires from 1644, the earliest fire date with sufficient sample depth, to 1920, after which fire occurrence was interrupted. The mean fire interval (MFI) for fire dates scarring 10% or more of the samples was 6.25 years; there were 13 large‐scale fires identified with the 25% filter with an MFI of 22.6 years. Fire regimes varied over the landscape, with an early reduction in fire occurrence after 1829, likely associated with pastoralism, in the outer uplands away from the pass. In contrast, the pass corridor had continuing fire occurrence until the early 20th century. Fires were synchronized with large‐scale top‐down climatic oscillations (drought and La Niña), but the spatially explicit landscape sampling design allowed us to detect bottom‐up factors of topography, livestock grazing, and human movement patterns that interacted in complex ways to influence the fire regime at fine scales. Since the early 20th century, however, fires have been completely excluded. Fuel accumulation in the absence of fire and warming climate present challenges for future management.
View article.
Across the breadth of fire science disciplines, women are leaders in fire research and development. This piece acknowledges some of these leaders to promote diversity across our disciplines.
View article.
This study shows that previously unnoted declines in summer precipitation from 1979 to 2016 across 31–45% of the forested areas in the western United States are strongly associated with burned area variations. The number of wetting rain days (WRD; days with precipitation ≥2.54 mm) during the fire season partially regulated the temperature and subsequent vapor pressure deficit (VPD) previously implicated as a primary driver of annual wildfire area burned.
View paper.
This study found that fire frequency and a coarse measure of grazing use were not highly predictive of seed bank dynamics, with the exception that sites that burned <10 years ago had greater above-vs. below-ground similarity. Shrub cover predicted multiple below-ground characteristics: Ericameria nauseosa was associated with increased density of introduced species, Chrysothamus viscidiflorus was associated with increased densities of native annual species, and Artemisia tridentata was associated with increased richness of rare native species. Shrub cover estimates were predictive of seed bank composition, and suggest that areas dominated by A. tridentata would have the greatest restoration potential within their seed banks.
View full report.
View brief.
This Rangelands on the Edge (ROTE) project improves our understanding of the fate of rangelands from historical, present day, and future perspectives by describing human modification, fragmentation, and future residential growth projections for rangeland-dominated vegetation. Since pre-European settlement, some 340 million acres (over 34 percent) of rangelands, particularly in the Great Plains, have been converted to alternative land uses, especially intensive agriculture (croplands, pastureland). Approximately 11 percent of private rangelands are likely to experience significant increases in housing development over the next 15 years.