Fuels & Fuel Treatments

ConferenceMeeting-Icon

Managing pinyon-juniper expansion in sagebrush ecosystems: Next steppe for the bi-state – 2015 presentations and posters

Presentations and posters.
Pdf format of speaker presentations and posters are available for this forum, which was held to advance the next step of conservation for bi-state sage-grouse populations by prioritization and implementation of large-scale projects through recently committed funding and collaboration between federal and state agencies, NGOs, and private land owners.

Computer monitor with triangular play button on the screen

Vegetation restoration in response to piñon and juniper control treatments

In this webinar, Bruce Roundy, Plant Ecologist at Brigham Young University, discusses vegetation restoration in response to piñon and juniper control treatments.

Webinar recording

Open book with lines simulating text on left and right pages

An evaluation of the Forest Service hazardous fuels treatment program

View article.

As part of an internal program assessment, this study evaluated the extent of fuel treatments and wildfire occurrence within lands managed by the National Forest System (NFS) between 2008 and 2012. Annually, 45% of NFS lands that would have historically burned were disturbed by fuel treatments and characteristic wildfire, indicating that NFS lands remain in a “disturbance deficit.” The highest wildfire hazard class had the lowest percentage of area treated and the highest proportion of both wildfire of any severity and uncharacteristically high-severity wildfire, suggesting that an alternative distribution of fuel treatment locations will probably improve program effectiveness.

Open book with lines simulating text on left and right pages

Pretreatment tree dominance and conifer removal treatments affect plant succession in sagebrush communities

View paper.

This study found that to retain the shrub, especially sagebrush, components on a site and increase ecosystem resilience and resistance through increases in tall grasses, treatment should occur at low to mid tree dominance index (TDI) using mechanical methods, such as cutting or mastication. Effects of fire and mechanical treatments implemented at different phases of tree dominance create different successional trajectories that could be incorporated into state-and-transition-models to guide management decisions.

Open book with lines simulating text on left and right pages

Planned fires or more unchecked wildfires?

View article.

In a nutshell, Finney and other forest experts say, periodic fires reduce fine fuels such as pine needles. They stop young conifer trees from growing into big conifers. Meadows form and break up continuous stands of mature forest.

Single sheet of paper with bullet points

Fire severity change with disturbance into fuel treatments

View brief.

Researchers measured 14 transects across two different fuel treatment types on three different units. For both fuel treatment types, only ladder fuels had been removed. They found that while severity was reduced at all sites, the spatial distribution of fire severity within the treatment areas varied by treatment type and unit as well as which fire severity metric they were analyzing. They found fuel treatments reduced fire severity anywhere from -7 m to 533 m into the treatment area. Kennedy and Johnson (2014) caution that local site conditions, topography and vegetation type will be other sources of variation in fire severity.

Open book with lines simulating text on left and right pages

The sage-grouse habitat mortgage: effective conifer management in space and time

View article.

This study estimates that fire has approximately twice the treatment life of cutting at time horizons approaching 100 yr, but, has high up-front conservation costs due to temporary loss of sagebrush. Cutting has less up-front conservation costs because sagebrush is unaffected, but it is more expensive over longer management time horizons because of decreased durability. Managing conifers within sage-grouse habitat is difficult because of the necessity to maintain the majority of the landscape in sagebrush habitat and because the threshold for negative conifer effects occurs fairly early in the successional process. The time needed for recovery of sagebrush creates limits to fire use in managing sage-grouse habitat. Utilizing a combination of fire and cutting treatments is most financially and ecologically sustainable over long time horizons involved in managing conifer-prone sage-grouse habitat.

Open book with lines simulating text on left and right pages

Effects of conifer treatments on soil nutrient availability and plant composition in sagebrush steppe

View article.

This study evaluated nutrient availability and herbaceous recovery following various cutting and prescribed fire treatments in late succession western juniper woodlands on two sites in southeast Oregon from 2007 to 2012. Treatments were untreated controls, partial cutting followed by fall broadcast burning (SEP), cut and leave (CUT), and cut and burn in winter (JAN) and spring (APR). Soil inorganic N (NO3−, NH4+), phosphorus (H2PO4−), potassium (K+), and cover of herbaceous species were measured in three zones; interspace, litter mats around the tree canopy (canopy), and beneath felled trees (debris). Peak nutrient availability tended to occur within the first two years after treatment. The increases in N, P, and K were greatest in severely burned debris and canopy zones of the SEP and APR treatments. Invasive annual grass cover was positively correlated to soil inorganic N concentrations. Herbaceous composition at the cool, wet big sagebrush-Idaho fescue site was generally resistant to annual grasses after juniper treatments and native plants dominating post-treatment even in highly impacted debris and canopy zones of the SEP treatment. The warm dry big sagebrush-bluebunch wheatgrass site was less resistance and resilient, thus, exotic annual grasses were a major component of the understory especially when tree and slash burning was of high fire severity.

Open book with lines simulating text on left and right pages

Understory plant community responses to fuel-reduction treatments and seeding in an upland PJ woodland

View paper.

This study found while understory perennial herbaceous plant cover remained low 1 and 2 yr post treatment, it increased by > 700% in all fuel-reduction treatment plots six growing seasons post treatment. Furthermore, while we observed minor increases in invasive annual grass, Bromus tectorum L. (cheatgrass), colonization in 2010 and 2011, there were substantial increases in B. tectorum cover by 2015. B. tectorum cover varied among treatments with the greatest cover in the unseeded mastication plot at nearly 30%. Seeding applications did not increase overall seed mix species cover but enhanced seed mix species richness and, thus, may have increased resistance to B. tectorum invasion in seeded treatment plots.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Water use efficiency before and after fire suppression and fuels treatments in fire-prone pine forests in the western US

View report.

Fuel treatments decreased intrinsic water use efficiency relative to the control in Arizona although the differences were not sufficiently large to reach the threshold of statistical significance. Very dry conditions characterized post-treatment climate in Arizona and treatment decreased competition among trees for water. Decreased competition appears to have led to higher stomatal conductance in surviving trees and thus lower intrinsic water use efficiency, even with post-treatment growth increases as measured by basal area index. The treatment response supports our hypothesis of the expected treatment response.

Narrow your search

Stay Connected