Fuels & Fuel Treatments

Icon for Field Guide resources

Selecting appropriate vegetation treatments in shrubland and PJ ecosystems in a wildfire crisis landscape: Evaluating resilience and resistance

View guide.

This guide identifies seven primary components that largely determine the outcomes of vegetation treatments to reduce fuels and maintain or increase resilience to disturbance and resistance to invasive annual plants. The components are (1) characteristics of the ecological type, (2) current, pre-treatment vegetation, (3) disturbance and management history, (4) fuel characteristics and appropriate treatments, (4) treatment severity and ecological response, (6) seeding considerations, and (7) post-treatment monitoring and management. Key questions and a set of tools are provided to assess the components. The guide provides information to (1) evaluate resilience and resistance for potential treatment areas, (2) determine likely effects of treatments on fuels, fire behavior, and ecological response, and (3) select appropriate treatments, including the need to seed. An evaluation score sheet is included for assessing relative resilience and resistance and seeding needs. The Pine Valley Ranger District of the Dixie National Forest, part of a USDA Forest Service “Wildfire Crisis Landscape,” is used as a case study. Maps and data summaries included for the district are dominant shrubland and pinyon-juniper ecological types, burn probabilities, cover of the invasive annual, cheatgrass, proxy soil temperature and moisture regimes, relative resilience and resistance, pinyon-juniper stand characteristics, and habit for mule deer and pinyon jay.

Journal article icon

Climate change is narrowing and shifting prescribed fire windows in western US

View article.

Prescribed fire implementation is subject to multiple constraints, including the number of days characterized by weather and vegetation conditions conducive to achieving desired outcomes. Here, we quantify observed and projected trends in the frequency and seasonality of western United States prescribed fire days. We find that while ~2 C of global warming by 2060 will reduce such days overall (−17%), particularly during spring (−25%) and summer (−31%), winter (+4%) may increasingly emerge as a comparatively favorable window for prescribed fire especially in northern states.

Factsheet/brief icon

30 years of fuel treatment effects on wildfire severity

View factsheet.

A recently published review, led by Kimberley Davis, Research Ecologist at the USDA Forest Service’s Rocky Mountain Research Station, and collaborators at the University of Montana and The Nature Conservancy, brings together results from 40 studies for a rigorous analysis of fuel treatment efficacy.

Journal article icon

Private landowner interest in prescribed fire in CA: Workshops in the Sierra Nevada

View article.

Before workshops on prescribed fire for private lands, we surveyed participants in six prescribed fires on private lands workshops in the Central Sierra Nevada from 2018 to 2019 (N = 172). We found that participants “want to use” pile burns and broadcast prescribed fires more than other land management treatments. There was also a strong interest in mechanical treatments in contrast to low interest in grazing. Some participants had “heard about” and “want to use” some pathways to apply prescribed fire on their lands, including government programs, contractors, friends and family, and Prescribed Burn Associations (PBAs). People had multiple objectives for their prescribed fire goals, and the majority wanted to promote ecosystem health, e.g., reduce fire hazards, foster natural land health, and reduce invasive plants. Perceived barriers were greatest for safety, cost, and resources while fewer participants perceived permits as a barrier.

Factsheet/brief icon

Understanding community acceptance of fuels treatments

View factsheet.

Public support is crucial for successful fuels management, but vocal opposition can mask broader yet quieter community acceptance. It is helpful for land managers to have a picture of all perspectives, not just the most vocal ones.

Journal article icon

Sagebrush songbirds benefit from conifer removal

View factsheet and videos.

The team, led by researcher Elise Zarri and supported by Working Lands for Wildlife and the Bureau of Land Management, found that birds whose habitat needs aligned closely with Greater Sage-grouse—Sage Thrashers, Vesper Sparrows, and Brewer’s Sparrows—successfully raised more offspring in areas where encroaching conifers had been removed. The data demonstrated that even though sagebrush habitat management was undertaken on behalf of one particular species of conservation concern, other species in the area benefited—indicating that Greater Sage-grouse may serve as an “umbrella” species for conservation of other organisms within its ecosystem.

Journal article icon

Constraints on mechanical fuel reduction treatments in USFS Wildfire Crisis Strategy priority landscapes

View article.

Legal, operational, and administrative factors have hindered the implementation of proposed wildland fire risk reduction management actions. Investing in steep-slope systems, expanding use of temporary roads, and revising administrative rules to allow for appropriately tailored mechanical thinning in special conservation areas are possible ways to meet fuel reduction treatment objectives of the USDA Forest Service Wildfire Crisis Strategy in twenty-one landscapes across the western United States. Broadening the land base available for mechanical treatment allows for flexibility to develop treatment plans that optimize across the multiple dimensions of effective landscape-scale fuel treatment design and restore fire as a key ecosystem process.

Journal article icon

Creating boundary objects supports knowledge co-development processes: A case study evaluation from the Colorado Front Range

View article.

This qualitative case study evaluates manager and researcher perceptions of the impact of a place-based, collaborative knowledge co-development process and examines the outcomes of that co-development for changes to management approaches. The USDA Forest Service (Forest Service) Rocky Mountain Research Station General Technical Report 373 (GTR-373) is a codeveloped science synthesis that functions as a boundary object providing a framework for planning, designing, and implementing management action for restoration of ponderosa and dry mixed-conifer forests. The process of creating and socializing the GTR-373 framework fostered continual knowledge exchange and engagement between researchers and managers across different organizations and levels of decision-making. This built trust in the information, improved justification for management action, developed a common foundation for cross-boundary implementation, and increased communication. The framework has been applied across jurisdictions and has been used as a foundational tool for training staff and designing projects. However, adapting the GTR-373 framework across scales remains challenging.

How will future climate change impact prescribed fire across the contiguous United States?

View article.

In this study, we combine climate projections with information on prescribed burning windows for ecoregions across the contiguous United States (CONUS) to compute the number of days when meteorological conditions allow for the safe and effective application of prescribed fire under present-day (2006–2015) and future climate (2051–2060) conditions. The resulting projections, which cover 57% of all vegetated area across the CONUS, indicate fewer days with conditions suitable for prescribed burning across ecoregions of the eastern United States due to rising maximum daily temperatures, but opportunities increase in the northern and northwestern United States, driven primarily by rising minimum temperatures and declining wind speeds.

Journal article icon

Fire suppression makes wildfires more severe and accentuates impacts of climate change and fuel accumulation

View article.

Fire suppression is the primary management response to wildfires in many areas globally. By removing less-extreme wildfires, this approach ensures that remaining wildfires burn under more extreme conditions. Here, we term this the “suppression bias” and use a simulation model to highlight how this bias fundamentally impacts wildfire activity, independent of fuel accumulation and climate change. We illustrate how attempting to suppress all wildfires necessarily means that fires will burn with more severe and less diverse ecological impacts, with burned area increasing at faster rates than expected from fuel accumulation or climate change. Over a human lifespan, the modeled impacts of the suppression bias exceed those from fuel accumulation or climate change alone, suggesting that suppression may exert a significant and underappreciated influence on patterns of fire globally. Managing wildfires to safely burn under low and moderate conditions is thus a critical tool to address the growing wildfire crisis.

Narrow your search

Resource Types
No results found
Article / Book (166)
Webinar (107)
Synthesis / Tech Report (70)
Fact Sheet / Brief (57)
Field Guide (13)
Tool (12)
Map (11)
Video (11)
Abstract (9)
Conference / Meeting (9)
Topic
No results found
Carbon (1)
Case Study (11)
Climate & Fire & Adaptation (17)
Decision Support (14)
Fire & Economics (11)
Fire Behavior (39)
Fire Communication & Education (20)
Fire Ecology & Effects (55)
Fire History (5)
Fire Policy (9)
Fire Regimes (11)
Fire Risk (10)
Firefighter Safety (4)
Fuels & Fuel Treatments (488)
Human Dimensions of Fire (4)
Invasive Species (61)
Landscape Analysis (19)
Monitoring (15)
Post-fire Environment & Management (20)
Rehabilitation (2)
Resistance & Resilience (24)
Restoration (52)
Sage-grouse (31)
Sagebrush (65)
Smoke (8)
Targeted Grazing (16)
Traditional Ecological Knowledge (2)
Weather Effects (8)
Wildland Urban Interface (11)

Stay Connected