Fuels & Fuel Treatments

Journal article icon

Advances in the measurement of fuels and fuel properties

View articles.

The accurate measurement of fuel is central to fire science. This Special Issue solicits articles on recent advances of the use of laboratory, field, and remote sensing approaches to characterize the properties, arrangement, and quantity of fuels. We are open to all types of articles but Review papers and Technical Notes describing common or new approaches to measure fuel and fuel properties, are particularly encouraged. Topics are invited across the entire spectrum of fire science, including fuels in structural and wildland fire science environments.

Journal article icon

Shaded fuel breaks create wildfire-resilient forest stands: Lessons from a long-term study in the Sierra Nevada

View article.

Initial treatments reduced live basal area and retained larger-diameter trees; these effects persisted throughout the 20-year study period. Wildfires maintained low surface and ground fuel loads established by treatments. Treatments also reduced the probability of torching immediately post-treatment and 20 years post initial thinning treatments.

Journal article icon

A retrospective assessment of fuel break effectiveness for containing rangeland wildfires in the sagebrush biome

View article.

Fuel breaks were least successful in areas classified as having low resilience to disturbance and low resistance to invasion, in areas composed of primarily woody fuels, and when operating in high temperature and low precipitation conditions. Fuel breaks were most effective in areas where fine fuels dominated and in areas that were readily accessible. Maintenance history and fuel break type also contributed to the probability of containment. Overall results indicate a complex and sometimes paradoxical relationship between landscape characteristics that promote wildfire spread and those that impact fuel break effectiveness. Finally, we developed predictive maps of fuel break effectiveness by fuel break type to further elucidate these complex relationships and to inform urgently needed fuel break placement and maintenance priorities across the sagebrush biome.

Journal article icon

Extreme wildfire supersedes long-term fuel treatment influences on fuel and vegetation in chaparral ecosystems of northern CA

View article.

Pre-fire differences in fuel and vegetation responses among treatments largely did not persist or were not detectible 1 to 2 years following wildfire. These findings suggest that the extreme wildfire conditions superseded long-term treatment differences in many fuel and vegetation metrics observed prior to wildfire. Despite subtle treatment differences, the hand thinned treatment resulted in the lowest change in fuel loading relative to all other treatments. Lastly, pre-fire differences in exotic species among fuel treatments were retained following wildfire, suggesting some treatments may have greater potential for exotic species expansion or type conversion to exotic grasslands.

Journal article icon

Optimizing targeting of pinyon-juniper management for sagebrush birds of conservation concern while avoiding imperiled pinyon jay

View article.

We find that the inclusion of sagebrush-obligates expands the model-selected area of consideration for conifer management, likely because habitat overlap between sagebrush-obligates is imperfect. The inclusion of pinyon jay, a woodland-obligate, resulted in substantial shifts in the distribution of model-selected priority areas for conifer removal, particularly away from pinyon jay strongholds in Nevada and east-central California. Finally, we compared the conifer optimizations created here with estimates of ongoing conifer removal efforts across the intermountain west and find that a small proportion (13−18%) of management efforts had occurred on areas predicted as being important for pinyon jay, suggesting that much of the ongoing work is already successfully avoiding critical pinyon jay habitat areas.

Journal article icon

Regional context for balancing sagebrush- and woodland-dependent songbird needs with targeted pinyon-juniper management

View article.

Our findings demonstrate that targeted sage grouse habitat restoration under SGI was not at odds with protection of pinyon jay populations. Rather, conifer management has largely occurred among northern sagebrush landscapes where models suggest that past cuts likely benefit Brewer’s sparrow and sage thrasher while avoiding pinyon jay habitats.

 

Journal article icon

Assessing how fuel treatments are considered during incident response

View report.

We investigated how incident management teams consider and incorporate US Forest Service (USFS) fuel treatments into wildfire response. Our goals were to: 1) understand how forest and fire personnel communicate about existing treatments; 2) understand what treatment characteristics they look for to meet different objectives; and 3) gather recommendations for improving fuel treatments to support incident management. We conducted 59 interviews with fire and fuel personnel in the western United States. This work included seven case studies of 2020 and 2021 wildfires where existing fuel treatments were considered in incident response.

Journal article icon

Extreme wildfire supersedes long-term fuel treatment influences on fuel and vegetation in chaparral ecosystems of northern CA

View article.

Vegetation and substrate burn severity was characterized as moderate across the study site and did not differ among treatments. Contrasting with higher pre-fire shrub density in the mastication + burning treatment, 2-year post-fire live shrub density did not differ among treatments. Higher pre-fire fine woody fuel loading in the mastication treatment did not correspond to post-fire fuel loading among treatments, while the hand thinned treatment was the only treatment where fine fuel loading was not significantly reduced post-fire. Total plant species richness increased in all treatment types following wildfire, largely driven by an increase in exotic species. Native cover decreased, and exotic cover increased in oak and chaparral types, but greater exotic species cover in the mastication + burning treatment in chaparral was maintained following wildfire.

Synthesis/Technical Report icon

Manager perspectives on fuel break effectiveness and configurations

View report.

This study focused on alternative perspectives of successful fuel break use and the impact of fuel break configurations and management actions on fire risk across a given landscape. This was accomplished using a variety of methods. We used a survey of wildland fire management personnel to gather information on perceptions of fuel break effectiveness, data on fuel break use, and locations of the fuel breaks in question. Input was sought from
managers for fuel breaks throughout California. Managers who were responsible for a specific fuel break or were familiar with suppression operations on a fuel break were eligible to take this survey.

Journal article icon

Habitat-relationships reveal potential negative effects of conifer removal on a non-target species

View article.

Our results indicate pinyon jay populations are declining within Bird Conservation Region 16. Jay density was positively associated with sagebrush cover, Palmer Drought Severity Index, and pinyon-juniper cover. Conversely, jay populations were negatively associated with Normalized Difference Vegetation Index (NDVI). We found higher pinyon jay densities within locations possessing both sagebrush and pinyon-juniper cover; conditions characteristic of phase I and II conifer encroachment which are preferentially targeted for conifer removal to restore sagebrush communities. Conifer removal, if conducted at locations with high pinyon jay densities, is therefore likely to negatively affect jay abundance.

Narrow your search

Stay Connected