Human Dimensions of Fire
View article.
Across all cases, actors spanned boundaries to perform functions including: (1) convening meetings and agreements; (2) implementing projects; (3) community outreach; (4) funding support; (5) project planning; (6) scientific expertise. These functions fostered conducive boundary settings, concepts and objects to communicate and work across boundaries, navigating challenges to implementing work on the ground. This work highlights context-specific ways to advance cross-boundary wildfire risk reduction efforts and uses a boundary spanning lens to illustrate how collective action in wildfire management evolves in different settings. This research highlights prescribed fire as a gateway for future collective action on wildfire risk, including managing naturally ignited wildfires for resource benefits and improving coordination during wildfire suppression efforts.
View synthesis.
We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
View article.
We investigate priorities and effectiveness of wildfire suppression using a novel empirical strategy that compares 1,500 historical fire perimeters with the spatial distribution of assets at risk to identify determinants of wildfire suppression efforts. We find that fires are more likely to stop spreading as they approach homes, particularly when those homes are of higher value. This effect of threatened assets persists after controlling for physical factors (fuels, landscape, and weather) using outputs from a state-of-the-art wildfire simulation tool, and the probability that fire spread will be halted is affected by characteristics of homes 1–2 km from a fire’s edge. Our results provide evidence that wildfire suppression can substantively affect outcomes from wildfires but that some groups may benefit more from wildfire management than others.
View article.
We evaluated the prominence and function of feedback loops embedded in cognitive maps—beliefs about patterns of causal relationships that drive system dynamics—elicited from a diverse cross-section of stakeholders in a fire-prone region in the U.S. West. We demonstrate that cognition of feedback loops is rare among individuals, but increasingly prominent within aggregations of cognitive maps, which underscores the importance of collaborative decision-making. Our analysis further reveals a bias toward perception of amplifying feedback loops and of loops in which management actions result in desirable outcomes, which points to areas where progress may be made in reforming wildfire risk governance.
View article.
By mobilizing a timely and safe initial response, early detection technologies, strategic networks of fuel breaks, and Rangeland Fire Protection Associations help “minimize the bad days” on the fireline and improve suppression success on a vast and remote landscape.
View article.
Research organizations like Rocky Mountain Research Station may be able to institutionalize co-production by adjusting the way they incentivize and evaluate researchers, increasing investment in science delivery and scientific personnel overall, and supplying long-term funding to support time-intensive collaborations. These sorts of structural changes could help transform the culture of fire science so that coproduction is valued alongside more conventional scientific activities and products.
View article.
In this paper, researchers seek to address this question based on interviews with leaders engaged in the management of jurisdictionally complex wildfire incidents. They propose a multi-level framework for conceiving co-management as strategic efforts of individual actors to cooperatively manage perceived interdependencies with others through one or more formal or informal institutional arrangements. They then demonstrate the value of the proposed framework in its ability to organize a series of questions for diagnosing co-management situations within the context of jurisdictionally complex wildfires.
View article.
In this paper, we seek to address this question based on interviews with leaders engaged in the management of jurisdictionally complex wildfire incidents. We propose a multi-level framework for conceiving co-management as strategic efforts of individual actors to cooperatively manage perceived interdependencies with others through one or more formal or informal institutional arrangements. We then demonstrate the value of the proposed framework in its ability to organize a series of questions for diagnosing co-management situations within the context of jurisdictionally complex wildfires.
Webinar recording.
Federally owned public lands, originally designated to properly manage natural resources, are prone to wildfire in the southern Rocky Mountains, a risk which has increased as a result of environmental conditions and historical land management. Outdoor recreation has become increasingly prevalent since the twentieth century, providing greater access to fire-prone lands. Using San Juan National Forest as the study site, this presentation explores research analyzing the influence outdoor recreation and human access have on anthropogenic wildfire occurrence and size in the southern Rocky Mountains. GIS methodologies and statistical analysis demonstrate the impact designated outdoor recreation locations have on anthropogenic wildfires, giving insight into specific usage patterns that result in human-caused wildfire ignitions.
Webinar recording.
Description: In the southwestern US humans and ecosystems share a history of fire. Here, contemporary ecological patterns and processes that are thought to be natural may be highly influenced by past human land use legacies, at millennial time scales. The Jemez Mountains of central New Mexico provide a landscape laboratory rich in archaeological, ethnographic, and ecological data sets, within which to study the reciprocal, long-term interactions of humans and fire. Evidence from tree-rings, fire scars, and charcoal sediments suggests that prior to the 20th century, southwestern pine forests sustained frequent, low-severity surface fires. During a period of dense occupation in the 13th and 14th centuries, land and resource use may have significantly influenced forest structure, fuel properties, ignitions, and landscape fire dynamics. We developed complex spatial models, informed by rich archaeological, ethnographic, and dendroarchaeological data sets, to examine how plausible scenarios of human activities influenced forests and fire regimes ca. 1200-1900 CE. We found that prehistoric populations influenced forest and fire patterns at broad spatial scales, with feedbacks that maintained ecological resilience. Our results highlight the complexity and extent of long-term human-environment interactions and can be used as a comparative framework within which to evaluate the significance of contemporary and predicted anthropogenic impacts on landscapes and ecosystems.
Presenter: Rachel Loehman is a landscape and fire ecologist with the US Geological Survey. Her research focuses on the role of natural and anthropogenic disturbances in shaping ecological patterns and processes. Her current research projects include developing strategies for enhancing ecosystem and forest resilience to changing climate and disturbance regimes (western U.S.) and monitoring and modeling fire impacts to archaeological resources (southwestern U.S.).