Invasive Species

Factsheet/brief icon

Rangeland Analysis Platform (RAP) use in invasive species and conifer management

View brief.

Since its 2018 launch, the Rangeland Analysis Platform (RAP) has revolutionized rangeland management and monitoring. This free, powerful technology puts vegetation cover, productivity, historical tree cover, and more in the digital hands of anyone with a computer or smartphone.

But RAP isn’t just for landowners and managers. It’s also being used by scientists and researchers who are leveraging its cutting-edge technology to inform conservation planning. Recent research highlights just how beneficial RAP is proving to rangeland scientists and, in turn, to managers working to restore and maintain productive working rangelands from the Great Basin to the Great Plains.

Journal article icon

Long-term seeding outcomes in slash piles and skid trails after conifer removal

View article.

Using two designed experiments from a central Oregon juniper woodland, we resampled slash piles and skid trails 8 years after seeding. Our objectives were to assess the long-term vegetation response to conifer removal, ground disturbance, and seeding source (cultivar and local) in slash piles and skid trails. We found that seeded species persisted in the long term, but abundance patterns depended on the species, seed source, and the type of disturbance. In general, there were more robust patterns of persistence after pile burning compared to skid trails. Seeding also suppressed exotic grass cover in the long term, particularly for the local seed source. However, the invasion levels we report are still problematic and may have impacts on biodiversity, forage and fire behavior. Our short-term results were not predictive of longer-term outcomes, but short- and long-term patterns were somewhat predictable based on species life history traits and ecological succession. The use of a mix of species with different life history traits may contribute to seeding success in terms of exotic grass suppression. Lastly, our results suggest that locally adapted seed sources may perform as well or better compared to cultivars. However, more aggressive weed treatments before and after conifer removal activities and wider seeding application may be needed to effectively treat exotic grass populations.

Journal article icon

Elevational ascent and spread of exotic annual grass dominance in the Great Basin

View article.

More than a century after first appearing in the region, exotic annual grasses continue to proliferate and establish dominance in new environments across the Great Basin. Accelerated, strategic intervention is critically needed to conserve vulnerable sagebrush and salt desert shrub communities not yet heavily invaded. In this era of warming, future climate provides important context for selecting from among alternative management actions and judging long-term prospects of success.

Natural Areas Association Logo

How detection dogs can lend a paw in conservation programs

Webinar registration.

Free for Natural Areas Assoc members, $29 for non-members.

Journal article icon

Climate variability mediates changes in carbon and nitrogen pools caused by annual grass invasion

View article.

Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.

Journal article icon

Disturbance and sustainability in forests of the western US

View technical report.

This report assesses recent forest disturbance in the Western United States and discusses implications for sustainability. Individual chapters focus on fire, drought, insects, disease, invasive plants, and socioeconomic impacts. Disturbance data came from a variety of sources, including the Forest Inventory and Analysis program, Forest Health Protection, and the National Interagency Fire Center. Disturbance trends with the potential to affect forest sustainability include alterations in fire regimes, periods of drought in some parts of the region, and increases in invasive plants, insects, and disease. Climate affects most disturbance processes, particularly drought, fire, and biotic disturbances, and climate change is expected to continue to affect disturbance processes in various ways and degrees.

Journal article icon

Modelling species distributions and environmental suitability highlights risk of plant invasions in western US

View article.

Invasive forb and grass species are likely to expand their ranges and continued increases in temperature, aridity and area burned will increase invasion risk. Monitoring species presence and absence and mapping known and potential ranges with a focus on presence detection, as in our methodology, will aid in identifying new invasions and prioritizing prevention and control.

Great Basin mountain scene

Sagebrush recovery patterns after fuel treatments mediated by disturbance type and plant functional group interactions

View article.

Treatments in cooler and moister woodland sites had more positive effects on sagebrush recruitment and perennial grass cover, less negative effects on sagebrush intraspecific interactions, and smaller increases in annual grass cover indicating potential increases in resilience to fire. In warmer and drier invasion sites, reductions in woody fuels resulted in lack of sagebrush recruitment, disruption of sagebrush intraspecific interactions, and progressive increases in annual grass indicating reduced resilience to fire and resistance to invaders.

Journal article icon

Seeding locally sourced native compared to introduced bunchgrasses after wildfire in frigid WY big sagebrush

View article.

Seeded native and introduced bunchgrasses both increased bunchgrass abundance and cover, even though precipitation was below average the first year post-seeding. Seeding introduced wheatgrasses, however, increased bunchgrass cover and abundance more than seeding native bunchgrasses. Seeding introduced wheatgrasses also limited exotic annual grass abundance and cover, but seeding locally sourced native bunchgrasses did not. Native bunchgrasses are slow growing, thus may limit exotic annual grasses in time. Alternatively, additional treatments, such as exotic annual grass control, may be needed to improve their success. The establishment of seeded native bunchgrasses in Wyoming big sagebrush in a below-average precipitation year is a promising result and suggests further research to improve seeded native vegetation success is warranted. The greater establishment of introduced wheatgrasses and their ability to limit exotic annual grasses suggests that successful introduced species may serve as a model for guiding trait selection in native species.

SRM 2021 Conference logo

2022 Society for Range Management (SRM)’s 75th Annual Meeting

Meeting website.

Join us in the heart of New Mexico for the 75th Annual SRM Meeting. The beautiful high desert rangelands, diverse cultures, authentic art, and painted skies of Albuquerque will make for a great meeting.

Narrow your search

Can't find what you need?

Stay Connected