Invasive Species

Journal article icon

Managing medusahead using dormant season grazing in the northern Great Basin

View article.

The invasive annual grass, medusahead, infests rangelands throughout the West, from the Columbia Plateau to the California Annual Grasslands and the Great Basin. Dominating secondary succession in the sagebrush steppe, medusahead can degrade the habitat of threatened species such as the greater sage-grouse. This research explores the potential of dormant season grazing as an applied management strategy to reduce the negative impacts of medusahead while promoting recovery of perennial vegetation at the landscape scale. In particular, it assessed grazing with four treatments from 2018 to 2020: traditional grazing (May–October), dormant season grazing (October–February), traditional + dormant season grazing (May–February), and no grazing. After 2 yr of grazing treatments, biomass, density, cover, and fuel continuity did not differ between treatments (P > 0.05). However, biomass measurements were significantly different between years, which is likely due to greater than normal precipitation in 2019 and 2020. Between 2018 and 2019, annual grass biomass increased by 81% (666–1 212 kg ha−1) and perennial grass biomass increased by 165% (118–313 kg ha−1). Litter biomass decreased by approximately 15% in every year since 2018 (2 374, 2 012, and 1 678 kg ha−1 in 2018–2020). There were not significant differences in cover or density of annual and perennial grasses between treatments and years. Our results indicate that 2 yr may not be adequate time for dormant season grazing treatments to be effective in reducing the abundance of medusahead and that after 2 yr of treatments, dormant season grazing does not have a detrimental effect on perennial vegetation.

Journal article icon

Using indaziflam and activated carbon seed technology in efforts to increase perennials in Ventenata dubia-invaded rangelands

View article.

Reestablishing perennial vegetation dominance in ventenata (Ventenata dubia)– and other annual grass-invaded rangelands is critical to restoring ecological function and increasing ecosystem goods and services. Recovery of perennial dominance in ventenata-invaded rangelands is challenging and constrained by a lack of established best management practices; however, preemergent herbicides can, at least temporarily, reduce ventenata. Indaziflam is a preemergent herbicide that has longer soil activity than other commonly used preemergent herbicides that needs evaluated to determine if it offers multiple-year control of ventenata and to determine its effects on residual perennial vegetation. Some ventenata-invaded rangelands may not have enough residual vegetation to occupy the site after ventenata control, but longer soil activity with indaziflam likely limits establishment of seeded species. However, incorporating seeds in activated carbon pellets, which can limit herbicide damage, may be a strategy for establishing perennial vegetations simultaneously with indaziflam application. We evaluated 1) applying indaziflam to control ventenata and 2) broadcast-seeding perennial grass seed incorporated in activated carbon pellets with a simultaneous indaziflam application at two sites for 3 yr post treatment. Indaziflam controlled ventenata for the 3 yr sampled. Perennial grasses increased with indaziflam at the site that had more residual perennial grasses before treatment. At the other site, perennial forbs increased with indaziflam. Indaziflam offers multiple-year control of ventenata; however, plant community response depends on composition before treatment. Seeding perennial grass seeds incorporated in activated carbon pellets while indaziflam controlled ventenata did not increase perennial grass abundance. Though this was likely associated with low establishment due to below-average precipitation post seeding and because broadcast seeding is often an ineffective seeding method, we cannot rule out nontarget herbicide damage. Further evaluations of activated carbon technologies used in conjunction with indaziflam are needed to determine if this can be an effective management  strategy.

Journal article icon

Satellite‐derived prefire vegetation predicts variation in field‐based invasive annual grass cover after fire

View article.

Aims Invasion by annual grasses (IAGs) and concomitant increases in wildfire are impacting many drylands globally, and an understanding of factors that contribute to or detract from community resistance to IAGs is needed to inform postfire restoration interventions. Prefire vegetation condition is often unknown in rangelands but it likely affects variation in postfire invasion resistance across large burned scars. Whether satellite‐derived products like the Rangeland Analysis Platform (RAP) can fulfill prefire information needs and be used to parametrize models of fire recovery to inform postfire management of IAGs is a key question. Methods We used random forests to ask how IAG abundances in 669 field plots measured in the 2‐3 years following megafires in sagebrush steppe rangelands of western USA responded to RAP estimates of annual:perennial prefire vegetation cover, the effects of elevation, heat load, postfire treatments, soil moisture–temperature regimes, and land‐agency ratings of ecosystem resistance to invasion and resilience to disturbance. Results Postfire IAG cover measured in the field was % and RAP‐estimated prefire annual herbaceous cover was %. The random forest model had an R² of 0.36 and a root‐mean‐squared error (RMSE) of 4.41. Elevation, postfire herbicide treatment, and prefire estimates from RAP for the ratio of annual:perennial and shrub cover were the most important predictors of postfire IAG cover. Threshold‐like relationships between postfire IAG cover and the predictors indicate that maintaining annual:perennial cover below 0.4 and shrub cover below <10% prior to wildfire would decrease invasion, at low elevations below 1400 m above sea level. Conclusion Despite known differences between RAP and field‐based estimates of vegetation cover, RAP was still a useful predictor of variation in IAG abundances after fire. IAG management is oftentimes reactive, but our findings indicate impactful roles for more inclusively addressing the exotic annual community, and focusing on prefire maintenance of annual:perennial herbaceous and shrub cover at low elevations.

Journal article icon

Fire frequency effects on plant community characteristics in the Great Basin and Mojave Deserts

View article.

Wildfire regimes are changing dramatically across North American deserts with the spread of invasive grasses. Invasive grass fire cycles in historically fire-resistant deserts are resulting in larger and more frequent wildfire. This study experimentally compared how single and repeat fires influence invasive grass-dominated plant fuels in the Great Basin, a semi-arid, cold desert, and the Mojave, a hyper-arid desert. Both study sites had identical study designs. In the summer of 2011, we experimentally burned half of each experimental block, the other half remaining as an unburned control. Half of the burned plots were reburned 5 years later to simulate increasing burn frequency. We estimated non-woody plant biomass, cover, and density in plots from 2017 to 2020.

US Geological Survey logo

USGS Sagebrush and Fire Research Webinar Series

What: USGS will host 7 webinars focusing on updates to sagebrush and fire related research funded in FY23.  Each webinar will loosely follow the themes of Fire, Invasives, Sagebrush Restoration, Climate, and Grouse/Wildlife.  More information on the projects covered will be shared soon.

When: Thursdays from 8:00-10:30 PST/9:00-11:30 MST
Still upcoming is: Feb 29Recordings: Webinars will be recorded, but it will be some time before they will be available to a non-DOI audience.
How: Microsoft Teams meeting (no registration required)

Click here to join

Meeting ID: 270 206 584 228Passcode: zdGDqX

FEB 29 Presentations:

TBA

Factsheet/brief icon

Long-term change in desert annuals during restoration, Joshua Tree National Park

View factsheet and article.

It is not well understood whether desert plantings can facilitate recruitment of other natives (or mainly just non-natives), or whether facilitation changes through time as a restoration site matures. To address these uncertainties, we partnered with the National Park Service to study plant community change below planted perennials and in interspaces (areas between perennials) during 12 years (2009-2020) in Joshua Tree National Park, California, in the southern Mojave Desert.

Journal article icon

Fire needs annual grasses more than annual grasses need fire

View article.

Sagebrush ecosystems of western North America are experiencing widespread loss and degradation by invasive annual grasses. Positive feedbacks between fire and annual grasses are often invoked to explain the rapid pace of these changes, yet annual grasses also appear capable of achieving dominance among vegetation communities that have not burned for many decades. Using a dynamic, remotely sensed vegetation dataset in tandem with remotely sensed fire perimeter and burn severity datasets, we examine the role of fire in transitions to and persistence of annual grass dominance in the U.S. Great Basin over the past 3 decades. Although annual grasses and wildfire are so tightly associated that one is rarely mentioned without the other, our findings reveal surprisingly widespread transformation of sagebrush ecosystems by invasive annual grasses in the absence of fire. These findings are discussed in the context of strategic management; we argue a pivot from predominantly reactive management (e.g., aggressive fire suppression and post-fire restoration in heavily-infested areas) to more proactive management (e.g., enhancing resistance and managing propagule pressure in minimally-invaded areas) is urgently needed to halt the loss of Great Basin sagebrush ecosystems.

Journal article icon

A nontarget, disturbance-resilient native species influences post-fire recovery

View article.

Native species that are abundant and persistent across disturbance-succession cycles can affect recovery and restoration of plant communities, especially in drylands. In the sagebrush-steppe deserts of North America, restoring deep-rooted perennial bunchgrasses (DRPBGs) is key to the strategy for breaking an increasingly problematic cycle of wildfire promoted by exotic annual grasses (EAGs) and displacement of perennials by post-fire increases in EAGs. We asked how Sandberg bluegrass (Poa secunda)—a common native grass that shares traits with EAGs such as resilience to disturbance and rapid, shallow-rooted, early season growth—(1) recovered after wildfire, (2) responded to different combinations of native-plant seedings of DRPBGs and EAG-targeting herbicides; and (3) in turn, related to DRPBG recovery.

Webinar, video, audio icon

Invasive Species Habitat Tool (INHABIT): What, where, and why of invasive plant species

Check for webinar recording here

Webinar, video, audio icon

Monitoring and removal of invasive grasses for restoration of dry desert systems

Webinar recording.

In this webinar, a panel of scientists and practitioners will discuss a number of management techniques and research questions being utilized or tested in an effort to reduce the presence of introduced grasses and restore the historic fire regime. These include:

  • Researching whether fire historically maintained the clumpy pattern of native vegetation in a self-perpetuating cycle.
  • Reducing the risk of wildfire severity and extent, retaining native plant communities, and maintaining ecological processes in dry desert systems through a variety of invasive species removal techniques.
  • Producing fire breaks, or strips of treatment intended to repress the forward progress of wildfires, through restoration of native vegetation patchiness and pruning of native woody species.
  • Utilizing new technologies to detect invasive grasses and monitor their spread, assess treatment and cost-effectiveness, and present results from a networked experiment that tests vegetation management practices across the southwestern US.

Narrow your search

Stay Connected