Invasive Species
View article.
This study investigated factors controlling cheatgrass invasions in sagebrush systems, including the influence of livestock grazing. It found that cheatgrass invasion was limited where few and small gaps existed between bunchgrass and where biological soil crusts were present to stabilize soil and limit cheatgrass establishment. Results also suggest that grazing reduces invasion resistance by decreasing bunchgrass abundance and trampling biological soil crusts. Managing grazing to ensure abundance and variety of bunchgrasses and to preserve biological soil crusts could help restore sagebrush ecosystems.
View synthesis.
In this review of recent literature and meta-analysis of seeding after wildfires, the authors found that seeding has little effect on erosion during the first year after fire and is highly dependent upon initial establishment and coverage of species in successive years. Older seedings were more likely to show reductions in invasives than younger seedings. Seedings with high plant establishment were more likely to reduce invasives than those with low establishment.
View article.
This purpose of this article is to outline how weather and climate information can be used to facilitate Ecologically-Based Invasive Plant Management (EBIPM) and adaptive management planning. The discussion follows the eight steps to adaptive management outlined in EBIPM planning guides.
View article.
This study evaluated restoration efforts applied to grasslands dominated by an invasive plant, sulfur cinquefoil, 6 yr after treatments. Of the five herbicides evaluated, picloram continued to provide the best control of sulfur cinquefoil over 6 yr. Plots with picloram applied in the fall had greater native forb cover. Seeding resulted in a 20% decrease in exotic grass cover. Successful establishment of native perennial grasses was not apparent until 6 yr after seeding. Our study found integrating herbicide application and the addition of native grass seed to be an effective grassland restoration strategy, at least in the case where livestock are excluded.
View article.
The results of this study suggest that mowing, as a standalone
treatment, does not restore the herbaceous understory in degraded Wyoming big sagebrush plant communities. Mowing should not be applied in Wyoming big sagebrush plant communities with degraded understories without additional treatments to limit exotic annuals and promote perennial herbaceous vegetation.
View article.
This study sampled cheatgrass endophytes and found many fire-associated fungi, including Morchella in three western states (New Mexico, Idaho, and Washington). In greenhouse experiments, a New Mexico isolate of Morchella increased both the biomass and fecundity of its local cheatgrass population, thus simultaneously increasing both the probability of fire and survival of that event, via more fuel and a greater, belowground seed bank, respectively.
Access NEPAssist tool.
NEPAssist is a tool that facilitates the environmental review process and project planning in relation to environmental considerations. The web-based application draws environmental data dynamically from EPA Geographic Information System databases and web services and provides immediate screening of environmental assessment indicators for a user-defined area of interest. These features contribute to a streamlined review process that potentially raises important environmental issues at the earliest stages of project development.
View brief.
This study discusses the potential of a fungus naturally associated with these Bromus species, which is lethal to the plants’ soil-banked dormant seeds. Study findings open the way to a commercial biocontrol product that may be capable of safely eliminating the seed bank of persistent invasive grasses. Biocontrol could be used in conjunction with other weed control measures and conservation strategies to make sagebrush-steppe lands less susceptible to reinvasion.
Visit SageSTEP website.
SageSTEP is a long-term multidisciplinary experiment evaluating methods of sagebrush steppe restoration in the Great Basin.
You can find and access information on this project’s:
- Land management treatments
- Treatment effects on vegetation and fuels; soils and biogeochemistry; water runoff and erosion; wildlife and insects
- The economics and human perspectives of management treatments
- Association with climate change
- Research findings thus far and project future
View chapter.
This review discusses how climate change may modify invasive species and the tools used to manage them. The understanding of how and in what direction climate change will drive such changes is insufficient to adequately predict and respond. However, climate-induced changes are likely to be complex and will need to be examined on a case by case basis until more generalized frameworks can be developed. This review will help guide development of important research questions, the answers to which will better position us to devise and apply meaningful management options to address invasive species in both present and future climates.