Invasive Species
Visit conference website.
This year’s annual conference will be in Boise, ID.
View article.
Field surveys revealed that bare-soil exposure decreased >20% over the 14 years owing to biomass accumulation, but this was primarily due to large increases in exotic annual “cheatgrass” (Bromus tectorum, +1.8-fold) and the litter it produces (+1.5-fold). Soil biocrusts increased 11.9% and perennial bunchgrasses increased 3% over the 14 years. These community changes varied at the patch scale and entailed inverse relationships of (1) both cheatgrass and biocrusts to plant-community basal cover, (2) cheatgrass to both biocrusts and perennial grasses, and (3) biocrusts to cheatgrass and litter. The spatiotemporal variability in vegetation constituted changes in plant-community states, according to cluster analysis. The modeled probability of a community transitioning to a cheatgrass state was (1) strongly and positively related to the initial (2007) cover of cheatgrass in hotspots where initial cheatgrass cover was >20%, and (2) negatively related to biocrust cover where initial biocrust cover was >4% of ground area. The decision space for this landscape can be framed as a shifting from acceptance towards resisting further degradation by removing livestock and their trampling of soil surfaces and utilization of perennial herbs. However, cheatgrass appears to be the most impactful agent of change and continued invasion appears imminent. Active restoration may help resist further degradation and direct change towards tolerable conditions
Webinar recording.
This presentation shares results from a recent region-wide field survey of sagebrush rangelands in Oregon and Idaho, where we examined drivers of annual grass invasion at local and regional scales, and how grazing intensity at different scales can interact with environmental determinants of vegetation.
View the infographic.
Nonnative species can be introduced or exacerbated by fire and fuels treatments. This resource describes how this can happen and what can be done to minimize the occurrence of nonnative species on burned sites or following fuels management.
View article.
We found the predicted positive relationship between mesic habitat availability and sage-grouse productivity, but annual precipitation explained additional variation in productivity even after accounting for mesic habitat availability. Hence, precipitation and drought may drive sage-grouse productivity via more than one mechanism acting on multiple demographic rates. Productivity was also limited by exotic annual grass invasion and conifer encroachment. Mesic habitat availability was a function of topographic relief, mean elevation, annual mean snow water equivalent, and winter temperatures, indicating that snowpack recharges the late summer mesic resources that support sage-grouse productivity. Management actions focused on maintaining and restoring mesic resources and drought resilient habitats, limiting the spread of exotic annual grasses, and reversing conifer encroachment should support future sage-grouse recruitment and help mitigate the effects of climate change.
View article.
We evaluated plant community succession following prescribed fire on Artemisia arbuscula var. arbuscula (low sagebrush) steppe in southeastern Oregon. Treatments were “prescribed burned” (burn; fall 2012) and “unburned” (control) low sagebrush a steppe, and the study design was a randomized complete block with 4 replicates per treatment. Herbaceous yield and vegetation canopy cover and density were compared between treatments (2012–2020). Fire practically eliminated low sagebrush and there was no recruitment of new plants in the first 8 years after burning. Herbaceous yield in the burn treatment was about double the control for most of the postfire period. Native perennial grasses and forbs constituted 94% to 96% and Bromus tectorum L. (cheatgrass) 0.2% to 2% of total herbaceous yield in the control. In the burn treatment, perennial grasses and forbs constituted 83% to 87%, native annual forbs 2% to 5%, and cheatgrass 3% to 9% of total herbaceous yield. Despite an increase in cheatgrass, the burned low sagebrush sites were dominated by herbaceous perennial grasses and forbs and exhibited high levels of resilience and resistance. After prescribed fire, for the study sites and comparable low sagebrush associations, weed control or seeding are not necessary to recover the native herbaceous community. However, the results in our study are for low-severity prescribed fire in intact low sagebrush plant communities. Higher-severity fire, as might occur with wildfire, and in low sagebrush communities having greater prefire invasive weed composition should not be assumed to develop similarly high levels of community resilience and resistance.
View article.
In 2006, we initiated fuel reduction treatments (prescribed fire, mowing, and herbicide applications [tebuthiuron and imazapic]) in six Artemisia tridentata ssp. wyomingensis communities. We evaluated long-term effects of these fuel treatments on: (1) magnitude and longevity of fuel reduction; (2) Greater sage-grouse habitat characteristics; and (3) ecological resilience and resistance to invasive annual grasses. Responses were analyzed using repeated-measures linear mixed models. Response variables included plant biomass, cover, density and height, distances between perennial plants, and exposed soil cover. Prescribed fire produced the greatest reduction in woody fuel over time. Mowing initially reduced woody biomass, which recovered by year 10. Tebuthiuron did not significantly reduce woody biomass compared to controls. All woody fuel treatments reduced sagebrush cover to below 15% (recommended minimum for Greater Sage-grouse habitat), but only prescribed fire reduced cover to below controls. Median mowed sagebrush height remained above the recommended 30 cm. Cheatgrass (Bromus tectorum) cover increased to above the recommended maximum of 10% across all treatments and controls. Ecological resilience to woody fuel treatments was lowest with fire and greatest with mowing. Low resilience over the 10 posttreatment years was identified by: (1) poor perennial plant recovery posttreatment with sustained reductions in cover and density of some perennial plant species; (2) sustained reductions in lichen and moss cover; and (3) increases in cheatgrass cover. Although 10 years is insufficient to conclusively describe final ecological responses to fuel treatments, mowing woody fuels has the greatest potential to reduce woody fuel, minimize shrub mortality and soil disturbance, maintain lichens and mosses, and minimize long-term negative impacts on greater sage-grouse habitat. However, maintaining ecological resilience and resistance to invasion may be threatened by increases in cheatgrass cover, which are occurring regionally.
View article.
Invasive annual grasses, wildfire, and climate change are changing ecosystem processes in the sagebrush biome at a pace and scale requiring an assessment of where processes can be saved, where they can be regained, and where they are lost. Confronting these threats is the primary focus of restoration and management efforts, guiding policy creation, project prioritization, and action on the ground. The new Defend the Core framework helps land managers, landowners, and policy makers to use the tools or management actions most likely to improve conditions.
View article.
Four case studies shared at the 2020 Invasive Annual Grass workshop provide lessons learned and opportunities to advance future management efforts to inform the direction for new science. Tackling the complex problem of invasive annual grass management will require an expansion of science-based case studies of real-world management efforts, strong science and management partnerships, and a platform for continuous learning and communication, such as a comprehensive database to document management outcomes along with Open Access journals that allow publishing of negative and null outcomes.
View article.
This article provides a broad overview of sagebrush plant community ecology, how that ecology has varied through time, the role of invasive annual grasses in influencing sagebrush plant community ecology, and thoughts on a productive path forward.