Invasive Species

Webinar, video, audio icon

Invasive annual grasses management

Webinar recording.

Invasive annual grasses pose ecological and economic challenges for invasive species managers and agricultural producers across the West. On this Working Lands, Working Communities Initiative webinar, speakers will examine management tools and strategies to effectively manage cheatgrass, medusahead, and ventenata.

Journal article icon

Bridging the gap between spatial modeling and management of invasive annual grasses in sagebrush

View article

This study involved a review of available spatial products to assess advances in, and barriers to, applying contemporary model-based maps to support rangeland management. We found dozens of regional data products describing cheatgrass or annual herbaceous cover and few maps describing ventenata or medusahead. Over the past decade, IAG spatial data increased in spatial and temporal resolution and increasingly used response variables that indicate the severity of infestation such as percent cover. Despite improvements, use of such data is limited by the time required to find, compare, understand, and translate model-based maps into management strategy. There is also a need for products with higher spatial resolution and accuracy. In collaboration with a multipartner stakeholder group, we identified key considerations that guide selection of IAG spatial data products for use by land managers and other users. On the basis of these considerations, we discuss issues that contribute to a research-implementation gap between users and product developers and suggest future directions for improved development of management-ready spatial products.

Map icon

Species-specific maps of nonnative and some native grasses in the western US- New maps from USGS

Access maps.

Research teams at the USGS Earth Resources Observation and Science (EROS) Center have released a satellite-derived dataset that maps the recent history of the fire-fueling invasive annual grasses spreading through the Western U.S. in greater detail than ever before.

Journal article icon

A geographic strategy for cross-jurisdictional, proactive management of invasive annual grasses in OR

View article.

Oregon partners used new spatial data to develop a geographic strategy for management of invasive annual grasses at landscape scales across jurisdictional boundaries. The geographic strategy considers annual and perennial herbaceous cover along with site resilience and resistance in categorizing areas into intact core, transitioning, and degraded areas. The geographic strategy provides 1) a conceptual framework for proactive management, building upon similar work recently begun across the Great Basin, and 2) multi-scale spatial products for both policymakers and local managers to identify strategic areas for investment of limited resources.

Journal article icon

Defend the core: Maintaining intact rangelands by reducing vulnerability to invasive annual grasses

View article.

Minimizing vulnerability of rangeland cores to annual grass conversion includes reducing exposure to annual grass seed sources, improving resilience and resistance by promoting perennial plants, and building capacity of communities and partnerships to adapt to changing conditions and respond to the problem with appropriate actions in a timely manner.

Webinar, video, audio icon

Invasion, fire, and the future of NW wildlands: Ventenata dubia in the Blue Mtns Ecoregion

Webinar recording.

In this deep dive webinar, Dr. Becky Kerns and collaborating scientists will present and synthesize results from a Joint Fire Science funded project aimed at understanding the current and future Ventenata dubia (ventenata) invasion in the Blue Mountains Ecoregion. Wildfires in 2014 and 2015 in the ecoregion reportedly spread in an unusual fashion owing to this invasive annual grass. Concern was raised that ventenata might be a “game-changer” for wildfire. Results from our studies show that ventenata has ecosystem transformation potential and influences landscape-scale fire across the ecoregion. In this webinar we report these findings and the management implications, as well as place our results in the context of other plant invasion research. The webinar includes 90 minutes of scientific presentations with short Q&A, and ends with a 30-minute wrap up and panel discussion. Talks will adhere to the following agenda to allow attendees to join and leave the meeting for specific talks, if desired.

 

Factsheet/brief icon

Rangeland Analysis Platform (RAP) use in invasive species and conifer management

View brief.

Since its 2018 launch, the Rangeland Analysis Platform (RAP) has revolutionized rangeland management and monitoring. This free, powerful technology puts vegetation cover, productivity, historical tree cover, and more in the digital hands of anyone with a computer or smartphone.

But RAP isn’t just for landowners and managers. It’s also being used by scientists and researchers who are leveraging its cutting-edge technology to inform conservation planning. Recent research highlights just how beneficial RAP is proving to rangeland scientists and, in turn, to managers working to restore and maintain productive working rangelands from the Great Basin to the Great Plains.

Journal article icon

Long-term seeding outcomes in slash piles and skid trails after conifer removal

View article.

Using two designed experiments from a central Oregon juniper woodland, we resampled slash piles and skid trails 8 years after seeding. Our objectives were to assess the long-term vegetation response to conifer removal, ground disturbance, and seeding source (cultivar and local) in slash piles and skid trails. We found that seeded species persisted in the long term, but abundance patterns depended on the species, seed source, and the type of disturbance. In general, there were more robust patterns of persistence after pile burning compared to skid trails. Seeding also suppressed exotic grass cover in the long term, particularly for the local seed source. However, the invasion levels we report are still problematic and may have impacts on biodiversity, forage and fire behavior. Our short-term results were not predictive of longer-term outcomes, but short- and long-term patterns were somewhat predictable based on species life history traits and ecological succession. The use of a mix of species with different life history traits may contribute to seeding success in terms of exotic grass suppression. Lastly, our results suggest that locally adapted seed sources may perform as well or better compared to cultivars. However, more aggressive weed treatments before and after conifer removal activities and wider seeding application may be needed to effectively treat exotic grass populations.

Journal article icon

Elevational ascent and spread of exotic annual grass dominance in the Great Basin

View article.

More than a century after first appearing in the region, exotic annual grasses continue to proliferate and establish dominance in new environments across the Great Basin. Accelerated, strategic intervention is critically needed to conserve vulnerable sagebrush and salt desert shrub communities not yet heavily invaded. In this era of warming, future climate provides important context for selecting from among alternative management actions and judging long-term prospects of success.

Journal article icon

Climate variability mediates changes in carbon and nitrogen pools caused by annual grass invasion

View article.

Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.

Narrow your search

Stay Connected