Sage-grouse

Conference/meeting icon

2020 Natural Areas Virtual Conference: Sierra to Sagebrush

Visit conference website.

The 2020 Natural Areas Virtual Conference- Sierra to sagebrush: Integrating management and stewardship across landscapes was an engaging virtual format providing as much research, technique and practical application of science as you have come to expect at a Natural Areas Conference.

The 47th Natural Areas Conference is focused on the unique ecological and management dynamics that distinguish the Nevada-California borderlands, the Great Basin and Sierra mountains.  This conference is designed to bring together land and resource managers, scientists, and policy makers to share and discuss creative ideas that cross disciplines, ecosystems, and jurisdictional boundaries. These interactions are critical to solving landscape scale issues in the region.

 

Journal article icon

Are sage-grouse fine-scale specialists or shrub-steppe generalists?

View article.

This study employed meta‐analyses of studies published from 1991 to 2019 to help resolve the role of fine‐scale vegetation structure in nest site selection and nest success across the geographic range of greater sage‐grouse and evaluate the validity of established habitat management objectives. Our approach tested habitat relationships at a range‐wide extent and a grain size closely matching scales at which agencies make management decisions. We found moderate, but context‐dependent, effects of shrub characteristics and weak effects of herbaceous vegetation on nest site selection. None of the tested vegetation characteristics were related to variation in nest success, suggesting nesting habitat–fitness relationships have been inappropriately extrapolated in developing range‐wide habitat management objectives. Our findings reveal surprising flexibility in habitat use for a species often depicted as having very particular fine‐scale habitat requirements, and cast doubt on the practice of adopting precise management objectives for vegetation structure based on findings of individual small‐scale field studies.

Journal article icon

Seasonal drought in North America’s sagebrush biome structures dynamic mesic resources for sage-grouse

View article.

This study estimates biome‐wide mesic resource productivity from 1984 to 2016 using remote sensing to identify patterns of food availability influencing selective pressures on sage‐grouse. We linked productivity to abiotic factors to examine effects of seasonal drought across time, space, and land tenure, with findings partitioned along gradients of ecosystem water balance within Great Basin, Rocky Mountains and Great Plains regions. Precipitation was the driver of mesic resource abundance explaining ≥70% of variance in drought‐limited vegetative productivity. Spatiotemporal shifts in mesic abundance were apparent given biome‐wide climatic trends that reduced precipitation below three‐quarters of normal in 20% of years. Drought sensitivity structured grouse populations wherein landscapes with the greatest uncertainty in mesic abundance and distribution supported the fewest grouse. Privately owned lands encompassed 40% of sage‐grouse range, but contained a disproportional 68% of mesic resources. Regional drought sensitivity identified herein acted as ecological minimums to influence differences in landscape carrying capacity across sage‐grouse range. Our model depictions likely reflect a new normal in water scarcity that could compound impacts of demographic bottlenecks in Great Basin and Great Plains. We conclude that long‐term population maintenance depends on a diversity of drought resistant mesic resources that offset climate driven variability in vegetative productivity. We recommend a holistic public–private lands approach to mesic restoration to offset a deepening risk of water scarcity.

Journal article icon

Reptiles under the conservation umbrella of the greater sage‐grouse

View article.

This study quantified which reptile species may benefit from the protection of intact sage‐grouse habitat and which may be affected by recent (since about 1990) habitat restoration actions targeting sage‐grouse. Of 190 reptile species in the United States and Canadian provinces where greater sage‐grouse occur, 70 (37%) occur within the range of the bird. Of these 70 species, about a third (11 snake and 11 lizard species) have >10% of their distribution area within the sage‐grouse range. Land cover similarity indices revealed that 14 of the 22 species (8 snake and 6 lizard species) had relatively similar land cover associations to those of sage‐grouse, suggesting greater potential to be protected under the sage‐grouse conservation umbrella and greater potential to be affected, either positively or negatively, by habitat management actions intended for sage‐grouse. Conversely, the remaining 8 species are less likely to be protected because of less overlap with sage‐grouse habitat and thus uncertain effects of sage‐grouse habitat management actions. Our analyses of treatment databases indicated that from 1990 to 2014 there were at least 6,400 treatments implemented on public land that covered approximately 4 million ha within the range of the sage‐grouse and, of that, >1.5 million ha were intended to at least partially benefit sage‐grouse. Whereas our results suggest that conservation of intact sagebrush vegetation communities could benefit ≥14 reptiles, a greater number than previously estimated, additional research on each species’ response to habitat restoration actions is needed to assess broader claims of multi‐taxa benefits when it comes to manipulative sage‐grouse habitat management.

Synthesis/Technical Report icon

USFS Annual report on greater sage-grouse

Access the report.

This report is part of an ongoing process of annual monitoring. It describes current conditions but is not an analysis or a description of a change of conditions. Although annual reports were produced for the years 2016 and 2017, the 2019 report also includes information from 2018. The 2019 report shows that:

  • FS projects improved habitat for sage-grouse on nearly 480,000 acres from 2016-2019.
  • Fires burned approximately 260,000 acres of greater sage-grouse habitat on National Forest System lands in 2016-2019.
  • Data on habitat degradation are available from 2015-2018, and cumulative anthropogenic disturbance was at 0.03% on greater sage-grouse biologically significant units.
  • Greater sage-grouse numbers in western states continue to cycle and are currently within the natural range of variability.
Journal article icon

Comparison of conservation policy benefits for an umbrella and related sagebrush-obligate species

View paper.

This study compared trends of sagebrush-obligate songbirds from the Breeding Bird Survey and sage-grouse lek counts in 2 sage-grouse populations in Wyoming from 1996–2013. Our evaluation was focused on similarities among population performance of the umbrella species and the species under that umbrella. Sagebrush-obligate songbird and both sage-grouse populations occupied habitat within and outside of protected core areas. Trends of sagebrush-obligate songbirds were not parallel or consistently similar in trajectory to sage-grouse in either core or non-core areas. Our results indicated core areas were successful at maintaining higher sage-grouse trends compared to areas not protected under the core area policy. However, sagebrush-obligate songbird trends did not follow the same pattern. This suggests that protection of only the best sage-grouse habitat may not be a sufficient conservation strategy for other sagebrush-obligate birds.

Synthesis/Technical Report icon

Effects of management practices on grassland birds – Greater sage-grouse

View report.

Keys to greater sage-grouse management are maintenance of expansive stands of sagebrush, especially varieties of big sagebrush with abundant forbs in the understory, particularly during spring; undisturbed and somewhat open sites for leks; and healthy perennial grass and forb stands intermixed with sagebrush for brood rearing. Within suitable habitats, areas should have 15–25% canopy cover of sagebrush 30–80 cm tall for nesting and 10–25% canopy cover 40–80 cm tall for brood rearing. In winter habitats, shrubs should be exposed 25–35 cm above snow and have 10–30% canopy cover exposed above snow. In nesting and brood-rearing habitats, the understory should have at least 15 percent cover of grasses and at least 10 percent cover of forbs greater than or equal to 18 cm tall. Greater sage-grouse have been reported to use habitats with 5–110 cm average vegetation height, 5–160 cm visual obstruction reading, 3–51% grass cover, 3–20% forb cover, 3–69 percent shrub cover, 7–63% sagebrush cover, 14–51% bare ground, and 0–18% litter cover. Unless otherwise noted, this account refers to habitat requirements and environmental factors affecting greater sage-grouse but not Gunnison sage-grouse. Habitats used by Gunnison sage-grouse are generally similar to habitats used by Greater Sage-Grouse, but some differences have been reported. The greater sage-grouse is a game bird and is hunted throughout most of its current range. This account does not address harvest or its effects on populations; rather, this account focuses on the effects of habitat management.

Journal article icon

Potential for post‐fire recovery of greater sage‐grouse habitat

View article.

We used long‐term data from the Utah Division of Wildlife Resources Range Trend Project to assess short‐term (1–4 yr post‐treatment) and long‐term (6–10 yr post‐treatment) effects of fire on vegetation cover at 16 sites relative to sage‐grouse habitat vegetation guidelines. Sagebrush cover remained low post‐fire at sites considered historically unsuitable for sage‐grouse (<10% initial sagebrush cover). In contrast, at sites that had higher (>10%) pre‐fire sagebrush cover, sagebrush cover decreased to <10% in the short‐term post‐fire, but by 6–10 yr after fire, most of these sites exhibited a recovering trajectory and two sites had recovered to >10% cover. Post‐fire sagebrush cover was positively related to elevation. Across all sites, perennial grasses and forbs increased in cover to approximately meet the habitat vegetation guidelines for sage‐grouse. Cheatgrass cover did not change in response to fire, and increased perennial grass cover appears to have played an important role in suppressing cheatgrass. Our results indicate that, while fire poses a potential risk for sage‐grouse habitat loss and degradation, burned sites do not necessarily need to be considered permanently altered, especially if they are located at higher elevation, have high sagebrush cover pre‐fire, and are reseeded with perennial grasses and forbs post‐fire. However, our results confirm that fire at more degraded sites, for example, those with <10% sagebrush cover, can result in cheatgrass‐dominated landscapes and sagebrush loss at these sites should be avoided.

Journal article icon

Oil and gas development on federal lands and sage-grouse habitats

Read the report.

The purpose of this analysis was to evaluate the number of federal oil and gas leases issued and number of APD issued between 2015 and 2019 that occurred within BLM-designated sage-grouse habitat (General and Priority Habitats). More specifically, our objective was to evaluate the differences in the number and acreage of federal oil and gas leases and number of APDs assigned inside and outside of BLM-designated sage-grouse habitat from October 1, 2015 to March 15, 2019.

Training icon

Successful vegetation management practices in the sagebrush-steppe

Learn more from the overview webinar.

Access training modules.

This learning series responds to Section 7.b.iii, Action Item #5 within the Fuels section of the 2015 Integrated Rangeland Fire Management Strategy, which calls for a comprehensive knowledge transfer program to enhance the fuels management program’s role in sagebrush-steppe management. The Strategy is intended to improve the efficiency and efficacy of actions to address rangeland fire, to better prevent and suppress rangeland fire, and improve efforts to restore fire-impacted landscapes.
The learning modules synthesize the state of the science for six management topics:

  • Background and origins of the conservation problems facing the sagebrush steppe and greater sage-grouse
  • Understanding and applying the concepts of resistance and resilience
  • Management of sagebrush ecosystems experiencing conifer encroachment
  • Management of sagebrush ecosystems at risk of or invaded by invasive annual grasses
  • Restoration of sagebrush steppe ecosystems
  • Issues specific to the eastern range of greater sage-grouse

Narrow your search

Can't find what you need?

Stay Connected