Sagebrush
View the brief.
Sagebrush ecosystems in the northern Great Basin face threats from invasive annual grasses and expanding conifers. Land managers need to work at large spatial scales to address these two ecological threats, but have limited resources to do so. This guide provides a framework for land managers to efficiently identify, discuss and address landscape-level threats. It is not an
instruction manual.
Webinar presented by Rich Hatfield.
This plan is intended to provide a shared vision for natural resource management and conservation in Nevada. The plan incorporates the existing “All Hands – All Lands” approach together with the recent Shared Stewardship Agreement signed by the State and Federal land management agencies in Nevada to guide the strategic direction for the management of natural resources across all lands in Nevada. To ensure this goal, NDF is asking natural resource management and conservation stakeholders and interested public to review and provide substantive comments that help advance the plan’s strategic direction.
The Northeastern California Plateaus Bioregion Science Synthesis reviews literature relevant to the ecology and management of the Great Basin ecosystems and dry pine forests of the Lassen and Modoc National Forests. Critical factors on these national forests are reduced water availability—expected to become more challenging as levels and patterns of precipitation and temperature change under climate variability—coupled with a high proportion of rangeland and open woodland whose vegetation community is influenced by grazing of livestock and wild animal populations. Conifer encroachment of rangelands and the densification of woodlands, a result of fire suppression, impact wildlife communities that rely on open woodlands and other habitats characterized by having overstories of low density. Sagebrush habitat, in particular, is threatened by fragmentation and conversion. Socioeconomic changes in the region include a transition in the economic base from extraction to that of consumption of amenity values, and the resulting fragmentation of landownership. The local human population is expected to continue its trend of decline, but increased pressure by recreationists from nearby expanding urban areas is forcing land managers to consider increasingly complex situations or actions integrating social, ecological, and economic factors. Indigenous peoples are assuming a greater role in the management of their lands. Finally, disturbance patterns, such as nonhistorical fire frequency and intensity levels, novel combinations of climate patterns, and the pervasive pressure of nonnative invasive species could result in future ecosystems different than those today, presenting additional managerial challenges. This synthesis is intended to serve as a science-based foundation that supports management of Northeastern California forests, woodlands, and rangelands.
Overview: Invasive annual grasses are quickly expanding across the West, dramatically changing sagebrush country. Today we are experiencing more frequent and hotter wildfires that are harmful to communities, western lands, and wildlife. This webinar discusses the wildfire trends, identify the culprits, the impacts, and break down the challenges/opportunities.
Presenter: Michele Crist, leading landscape ecologist with the National Interagency Fire Center.
Resources and information referenced in the webinar available on the SageWest website.
This webinar will include two presentations:
Sagebrush in prisons project: Native plant propagation for restoration with Stacy Moore, Ecological Education Program Director, Institute for Applied Ecology
California sustainability in prisons project: Seed propagation of Mojave Desert native plants with Tyler Knapp, Ecological Education Coordinator, Institute for Applied Ecology
View paper.
This paper evaluated the interaction between ecosystems and environmental forces in partitioning available energy from multi-sensor platform in the semi-arid region of the Snake River basin in Idaho. Field measurements of latent and sensible heat fluxes using scintillometers and the eddy covariance flux data during the growing season in 2011–2012 were able to identify spatial and seasonal variability in partitioning of surface energy components, including net radiation, latent, sensible, ground heat fluxes. Available energy measured from sagebrush, cheatgrass and lodgepole pine ecosystems indicate that 79%, 58%, and 62% partitioned into latent heat fluxes of 24%, 20%, and 35%, respectively. Role of precipitation and soil moisture, which in turn influenced the latent and sensible heat flux more profoundly were evident in sagebrush and cheatgrass as compared to lodgepole pine with a higher vapor pressure deficit and decreased relative humidity especially in the summertime between June and September. The Budyko analysis revealed that aridity index ratio was found to vary between 3 and 5 suggesting a degree of aridity in these ecosystems. Evapotranspiration (ET) was severely constrained by lack of soil moisture for cheatgrass and sagebrush when compared to the lodgepole pine ecosystem. In addition, it has been concluded that the sagebrush ecosystem regions can serve as recharge zones for enhancing groundwater storage in the Snake River Plains as they exhibit lower evapotranspiration rates in comparison to other ecosystems. This study emphasizes that use of field data can provide a better understanding of boundary layer fluxes, which in turn can help validate the fluxes simulated by land surface models. Implications of these results include the need for sustained monitoring and land–atmosphere interaction studies that are beneficial for effective water resource assessment and management.
View article.
The structure and composition of sagebrush‐dominated ecosystems have been altered by changes in fire regimes, land use, invasive species, and climate change. This often decreases resilience to disturbance and degrades critical habitat for species of conservation concern. Basin big sagebrush (Artemisia tridentata ssp. tridentata) ecosystems, in particular, are greatly reduced in distribution as land has been converted to agriculture and other land uses. The fire regime, relative proportions of shrub and grassland patches, and the effects of repeated burns in this ecosystem are poorly understood. We quantified postfire patterns of vegetation accumulation and modeled potential fire behavior on sites that were burned and first measured in the late 1980s at John Day Fossil Beds National Monument, Oregon, USA. The area partially reburned 11 yr after the initial fire, allowing a comparison of one vs. two fires. Repeated burns shifted composition from shrub‐dominated to prolonged native herbaceous dominance. Fifteen years following one fire, the native‐dominated herbaceous component was 44% and live shrubs were 39% of total aboveground biomass. Aboveground biomass of twice‐burned sites (2xB; burned 26 and 15 yr prior) was 71% herbaceous and 12% shrub. Twenty‐six years after fire, total aboveground biomass was 113–209% of preburn levels, suggesting a fire‐return interval of 15–25 yr. Frequency and density of Pseudoroegneria spicata and Festuca idahoensis were not modified by fire history, but Poa secunda was reduced by repeated fire, occurring in 84% of plots burned 26 yr prior, 72% of plots burned 15 yr prior, and 49% in 2xB plots. Nonnative annual Bromus tectorum occurred at a frequency of 74%, but at low density with no differences due to fire history. Altered vegetation structure modified fire behavior, with modeled rates of fire spread in 2xB sites double that of once‐burned sites. This suggests that these systems likely were historically composed of a mosaic of shrub and grassland. However, contemporary increases in fire frequency will likely create positive feedbacks of more intense fire behavior and prolonged periods of early‐successional vegetation in basin big sagebrush communities.
Access report.
Springs serve an ecologically important role as perennial water sources, essential habitat for native species, and support for stream flow. Spring developments on rangelands provide water to livestock and wildlife. Thoughtful design of sustainable developments will supply water to livestock and wildlife while maintaining the intrinsic ecological functions and values of springs. This guide addresses spring development project planning as well as long-term sustainable management of springs. The objectives of spring development design are (1) to retain hydrologic conditions in the developed spring habitat that are similar to undeveloped reference habitats and (2) to create a system that is easy to install and maintain. Report presents two gravity-flow development designs that incorporate flow-splitting devices to regulate environmental flows and levels and to work in a wide range of hydrologic conditions.
Description: Management of expanding pinyon-juniper woodlands in sagebrush habitats has become a prominent strategy for sagebrush conservation, with spatially targeted tree removal efforts designed to benefit sage-grouse increasing over the past decade. This webinar will highlight recent literature on wildlife response to pinyon-juniper management across the West, and new science and tools for considering sagebrush- and woodland-obligate songbirds, like pinyon jay, in conifer management. Knowledge gained from wildlife studies will be put into context of emerging remote sensing analyses that provide a comprehensive picture of continued woodland change.
Presenters: Jason Tack, US Fish and Wildlife Service, Habitat and Population Evaluation Team, Missoula, MT; Jeremy Maestas, USDA Natural Resources Conservation Service, West National Technology Support Center, Portland, OR.
CE Credits: This webinar was approved by the Society for Ecological Restoration for 1 Continuing Education Credit (CEC).
To receive credit you’ll need to reference pre-approval code 16067645 and upload your webinar certificate (automatically emailed from Joint Fire Science Program JFSP following your attendance) at ser.submittable.com