Sagebrush
View report.
We found that there were large proportions of non-significant responses among all categories combined, with roughly half or more of all responses non-significant (48 percent for wildlife, 60 percent for vegetation-environmental), comparable to other recent systematic reviews of pinyon-juniper treatment effects. However, we also found that when there were significant responses, some important trends potentially emerged. Important undesirable outcomes included far more positive than negative responses of exotic grass and forb abundance among nearly all treatment types. Cutting treatments were also more likely to decrease biocrust cover and microbial activity. Potentially beneficial outcomes included mostly positive responses among sagebrush obligate species, including more positive than negative responses for mule deer and sage-grouse. Some treatment types (for example, mastication) also resulted in more positive than negative responses for native grasses and forbs (although, non-significant responses were the majority). We also highlighted many limitations of this review, including how responses often come from few studies, and how some response-treatment category combinations lack adequate response data. Moreover, the existing research is often insufficient to address many key questions about treatment effects, largely owing to short time-scales and limited spatial extents of observations, which do not match the size of treatments being implemented by land managers, nor capture long-term, post-treatment ecological dynamics. We also identify a lack of research that addresses key interactions that could undermine restoration objectives, including potential effects of climate change and grazing on post-treatment environments. Thus, we emphasize the importance of integrating these factors into future pinyon-juniper treatment research, and we stress the need for use of monitoring programs and research studies that partake in data collection and analysis over long durations and broad spatial scales.
View article.
More frequent, larger, and severe wildfires necessitate greater resources for fire-prevention, fire-suppression, and postfire restoration activities, while decreasing critical ecosystem services, economic and recreational opportunities, and cultural traditions. Increased flexibility and better prioritization of management activities based on ecological needs, including commitment to long-term prefire and postfire management, are needed to achieve notable reductions in uncharacteristic wildfire activity and associated negative impacts. Collaboration and partnerships across jurisdictional boundaries, agencies, and disciplines can improve consistency in sagebrush-management approaches and thereby contribute to this effort. Here, we provide a synthesis on sagebrush wildfire trends and the impacts of uncharacteristic fire regimes on sagebrush plant communities, dependent wildlife species, fire-suppression costs, and ecosystem services. We also provide an overview of wildland fire coordination efforts among federal, state, and tribal entities.
View article.
Fuel breaks were least successful in areas classified as having low resilience to disturbance and low resistance to invasion, in areas composed of primarily woody fuels, and when operating in high temperature and low precipitation conditions. Fuel breaks were most effective in areas where fine fuels dominated and in areas that were readily accessible. Maintenance history and fuel break type also contributed to the probability of containment. Overall results indicate a complex and sometimes paradoxical relationship between landscape characteristics that promote wildfire spread and those that impact fuel break effectiveness. Finally, we developed predictive maps of fuel break effectiveness by fuel break type to further elucidate these complex relationships and to inform urgently needed fuel break placement and maintenance priorities across the sagebrush biome.
View article.
By comparing connectivity patterns over time, we found that most of the biome experienced moderate change; the amount and type of change varied spatially, indicating that areas differ in the trend direction and magnitude of change. Two different types of designated areas of conservation and management interest had relatively high proportions of stable, high-connectivity patterns over time and stable connectivity trends on average. These results provide ecological information on sagebrush connectivity persistence across spatial and temporal scales that can support targeted actions to address changing structural connectivity and to maintain functioning, connected ecosystems.
View article.
Twelve in-depth interviews were conducted, and responses were analyzed using a qualitative method, causal layered analysis, not previously applied in a land management context. In the most superficial (litany) layer, cost and scale were prominent. The next (systemic) layer was framed by policy and bureaucracy limitations as well as technical barriers to implementation. In the third (worldview) layer, lack of a proactive management tradition within agencies represented a principal barrier. In the deepest (myth/metaphor) layer, the central belief is that human intervention should be used to protect ecosystem services only after they are disrupted due to human activity. Based on the different obstacles found at each level, we suggest ways to overcome the barriers detected.
View article.
Interactions among species can strongly affect how plant communities reassemble after disturbances, and variability among native and invasive species across environmental gradients must be known in order to manage plant-community recovery. The stress-gradient hypothesis (SGH) predicts species interactions will be more positive in abiotically stressful conditions and conversely, more negative in benign conditions, and the resistance-resilience concept (RRC) may predict where and when invasions will complicate ecosystem recovery. We evaluated how abiotic stress and biotic interactions determine native bunchgrass abundances across environmental gradients using additive models of cover data from over 500 plots re-measured annually for 5 years as they recovered naturally (untreated) after a megafire (>100,000 ha) in sagebrush steppe threated by the invasive-grass and fire cycle.
View article.
Thus, to understand the effects of removing contemporary grazing, we compared contemporary grazed areas to long-term (+10 yrs.) grazing exclusion areas in three common Wyoming big sagebrush community types: intact, degraded, and exotic annual grass-dominated types. Plant community characteristics (cover, density, diversity, richness, dissimilarity) were measured in 2020 and 2021 in five grazed and grazing excluded areas within each community type. Most plant community characteristics were not influenced by grazing exclusion, suggesting that the removal of contemporary grazing has little effect on Wyoming big sagebrush plant communities. The effect of grazing exclusion on Sandberg bluegrass abundance and litter cover varied among community types, suggesting that grazing exclusion effects slightly varied among community types. In contrast, most plant community characteristics varied among community types and between years, suggesting that grazing management plans need to account for the spatial and temporal variability among Wyoming big sagebrush communities. Furthermore, our results suggest that contemporary grazing exclusion has negligible effects compared to contemporary grazing on plant communities, and that exclusion of contemporary grazing (passive restoration) does not promote the recovery of degraded and annual grass invaded plant communities.
View article.
Here, we investigated the effects of seasonal weather and plant associations, related to abiotic characteristics, on herbaceous production dynamics across 44 intact, representative sagebrush steppe sites across eastern Oregon from 2003 to 2012. We tested for the effects of sampling year, lagged precipitation, and potential evapotranspiration predictors, as well as prior year biomass and plant association on production of major herbaceous functional groups. We also tested for synchrony across functional groups and plant associations. We found that spring precipitation was the most consistent predictor of production. However, several other variables including prior year weather significantly affected production. Production sensitivity to weather was combined with high synchrony across functional groups and associations, suggesting low potential for production stability associated with these factors in sagebrush steppe in the northern Great Basin.
View article.
In this forum paper we briefly review current knowledge of common fuel treatment approaches, their intended benefits, potential risks, and limitations. We additionally discuss challenges for fuel treatment strategies in the context of changes in climate, invasive species, wildlife habitat, and human population, and we explore how advances in geospatial technologies, monitoring, and fire behavior modeling, as well as accounting for social context, can improve the efficacy of fuels management in sagebrush ecosystems. Finally, given continued potential for ecosystem transformation, we describe approaches to future fuels management by considering the applicability of the Resist-Accept-Direct (RAD) framework. The intent of the paper is to provide scientists and land managers with key information and a forward-thinking framework for fuels science and adaptive management that can respond to both expected and unexpected changes in sagebrush rangelands.