Sagebrush

Journal article icon

Ten-year ecological responses to fuel treatments within semiarid Wyoming big sagebrush

View article.

In 2006, we initiated fuel reduction treatments (prescribed fire, mowing, and herbicide applications [tebuthiuron and imazapic]) in six Artemisia tridentata ssp. wyomingensis communities. We evaluated long-term effects of these fuel treatments on: (1) magnitude and longevity of fuel reduction; (2) Greater sage-grouse habitat characteristics; and (3) ecological resilience and resistance to invasive annual grasses. Responses were analyzed using repeated-measures linear mixed models. Response variables included plant biomass, cover, density and height, distances between perennial plants, and exposed soil cover. Prescribed fire produced the greatest reduction in woody fuel over time. Mowing initially reduced woody biomass, which recovered by year 10. Tebuthiuron did not significantly reduce woody biomass compared to controls. All woody fuel treatments reduced sagebrush cover to below 15% (recommended minimum for Greater Sage-grouse habitat), but only prescribed fire reduced cover to below controls. Median mowed sagebrush height remained above the recommended 30 cm. Cheatgrass (Bromus tectorum) cover increased to above the recommended maximum of 10% across all treatments and controls. Ecological resilience to woody fuel treatments was lowest with fire and greatest with mowing. Low resilience over the 10 posttreatment years was identified by: (1) poor perennial plant recovery posttreatment with sustained reductions in cover and density of some perennial plant species; (2) sustained reductions in lichen and moss cover; and (3) increases in cheatgrass cover. Although 10 years is insufficient to conclusively describe final ecological responses to fuel treatments, mowing woody fuels has the greatest potential to reduce woody fuel, minimize shrub mortality and soil disturbance, maintain lichens and mosses, and minimize long-term negative impacts on greater sage-grouse habitat. However, maintaining ecological resilience and resistance to invasion may be threatened by increases in cheatgrass cover, which are occurring regionally.

Synthesis/Technical Report icon

Sagebrush Conservation Strategy—Challenges to sagebrush conservation

View report.

This “Sagebrush Conservation Strategy—Challenges to Sagebrush Conservation,” is an overview and assessment of the challenges facing land managers and landowners in conserving sagebrush ecosystems. This strategy is intended to provide guidance so that the unparalleled collaborative efforts to conserve the iconic greater sage-grouse (Centrocercus urophasianus) by State and Federal agencies, Tribes, academia, nongovernmental organizations, and stakeholders can be expanded to the entire sagebrush biome to benefit the people and wildlife that depend on this ecosystem. This report is organized into 3 parts.

Part I. Importance of the Sagebrush Biome to People and Wildlife; Part II. Change Agents in the Sagebrush Biome—Extent, Impacts, and Effort to Address Them; and Part III. Current Conservation Paradigm and Other Conservation Needs for Sagebrush

Journal article icon

The range has changed: My viewpoint on living in the Sagebrush Sea in the new normal of invasives and wildfire

View article.

Invasive annual grasses, wildfire, and climate change are changing ecosystem processes in the sagebrush biome at a pace and scale requiring an assessment of where processes can be saved, where they can be regained, and where they are lost. Confronting these threats is the primary focus of restoration and management efforts, guiding policy creation, project prioritization, and action on the ground. The new Defend the Core framework helps land managers, landowners, and policy makers to use the tools or management actions most likely to improve conditions.

Journal article icon

Managing for resilient sagebrush plant communities in the modern era: We’re not in 1850 anymore

View article.

This article provides a broad overview of sagebrush plant community ecology, how that ecology has varied through time, the role of invasive annual grasses in influencing sagebrush plant community ecology, and thoughts on a productive path forward.

Sagebrush sunset

Arid and Semi-Arid Lands Seed Technology and Restoration Online Course

Who: This training course was developed in concert with Society for Ecological Restoration and BLM’s National Training Center. It  is available to restoration practitioners within the DOI and our partners. Target Audience: Natural Resource Specialists, Fire, Fuels, Emergency Stabilization and Rehabilitation, Botanists, Wildlife Biologists, Ecologists, Range, Minerals, Mining and Reclamation

What: This self-paced on-line course is intended to serve as an introduction to seed technology and arid and semi-arid lands restoration as a first step towards more in-depth in person restoration and revegetation courses. It provides world-class training on restoring dry land ecosystems, which are critical resources in tackling the climate crisis. By the end of the course, participants will have an understanding of:​ Ecological restoration principles, standards of practice, and concepts to increase the success of restoration efforts​, arid/semi-arid ecosystems and the challenges they pose to successful restoration​, and how to apply ecological restoration best practices and concepts in restoration planning in arid and semi-arid ecosystems​.

Where: Request an account here eDOIU and search for: Arid and Semi-Arid Lands Seed Technology and Restoration.

The course consists of the following modules/lessons. Each are accessed separately and must be taken in sequential order.

Module 1: Introduction
Module 2: The National Seed Strategy
Module 3: Principles, Standards and Concepts

Lesson 3.1: Principles and Standards for the Practice of Ecological Restoration
Lesson 3.2: Principles, Standards and Concepts – Native Seed Standards

Module 4: Arid and Semi-Arid Systems

Lesson 4.1: Overview of Drylands
Lesson 4.2: Restoration Challenges
Lesson 4.3: Current Knowledge

Module 5: Developing and Implementing a Restoration Plan

Introduction
Lesson 5.1: Project Context
Lesson 5.2: Vision, Goals, and Objectives
Lesson 5.3: Plant Materials Selection and Procurement
Lesson 5.4: Site Preparation
Lesson 5.5: Developing and Implementing Seeding and Planting Strategies
Lesson 5.6: Monitoring and Management
Lesson 5.7: Putting It All Together

 

Journal article icon

Interannual variation in climate contributes to post‐fire restoration outcomes in seeded sagebrush steppe

View article.

Across the Great Basin, sagebrush growth increased in wetter, cooler springs; however, the importance of spring weather varied with sites’ long‐term climates, suggesting differing ecophysiological limitations across sagebrush’s range. Incorporation of spring weather, including from the “planting year,” improved predictions of sagebrush recovery, but these advances were small compared to contributions of time‐invariant site characteristics. Given extreme weather conditions threatening this ecosystem, explicit consideration of weather could improve the allocation of management resources, such as by identifying areas requiring repeated treatments; but improved forecasts of shifting mean conditions with climate change may more significantly aid the prediction of sagebrush recovery.

Journal article icon

Fuel reduction treatments reduce modeled fire intensity in the sagebrush steppe

View article.

This study used the Fuel and Fire Tool fire behavior modeling program to test whether treatments impacted potential fire behavior. Prescribed fire initially removed 49% of the total fuel load and 75% of shrubs, and fuel loads remained reduced through Year 10. Mowing shifted fuels from the shrub canopy to the ground surface but did not change the total fuel amount. Prescribed fire and mowing increased herbaceous fuel by the second posttreatment year and that trend persisted through Year 10. Tebuthiuron treatments were ineffective at altering fuel loads. Imazapic suppressed herbaceous vegetation by 30% in Years 2 and 3 following treatment. The modified fuel beds in fire and mow treatments resulted in modeled flame lengths that were significantly lower than untreated control plots for the duration of the study, with shorter term reductions in reaction intensity and rate of spread. Understanding fuel treatment effectiveness will allow natural resource managers to evaluate trade-offs between protecting wildlife habitat and reducing the potential for high-intensity wildfire.

Journal article icon

Fuel reductions reduce modeled fire intensity in sagebrush steppe

View article.

This study presents 10 years of data on fuel accumulation and the resultant modeled fire behavior in prescribed fire, mowed, herbicide (tebuthiuron or imazapic), and untreated control plots in the Sagebrush Treatment Evaluation Project (SageSTEP) network in the Great Basin, USA. Fuel data (i.e., aboveground burnable live and dead biomass) were collected in each treatment plot at Years 0 (pretreatment), 1, 2, 3, 6, and 10 posttreatment. We used the Fuel and Fire Tool fire behavior modeling program to test whether treatments impacted potential fire behavior. Prescribed fire initially removed 49% of the total fuel load and 75% of shrubs, and fuel loads remained reduced through Year 10. Mowing shifted fuels from the shrub canopy to the ground surface but did not change the total fuel amount. Prescribed fire and mowing increased herbaceous fuel by the second posttreatment year and that trend persisted through Year 10. Tebuthiuron treatments were ineffective at altering fuel loads. Imazapic suppressed herbaceous vegetation by 30% in Years 2 and 3 following treatment. The modified fuel beds in fire and mow treatments resulted in modeled flame lengths that were significantly lower than untreated control plots for the duration of the study, with shorter term reductions in reaction intensity and rate of spread. Understanding fuel treatment effectiveness will allow natural resource managers to evaluate trade-offs between protecting wildlife habitat and reducing the potential for high-intensity wildfire.

Journal article icon

Grazing effects on shrub-induced resource islands and herbaceous vegetation heterogeneity in sagebrush-steppe communities

View article.

We investigated the long-term (+80 yrs.) effects of moderate grazing by cattle on sagebrush-induced spatial heterogeneity in soil nutrients, herbaceous vegetation, and ground cover in sagebrush-bunchgrass steppe communities at eight sites in southeastern Oregon. Each site consisted of a long-term grazing exclosure and an adjacent grazed area. Almost all measured herbaceous vegetation (cover, density, diversity, and evenness) and ground cover variables differed between canopy and interspace microsites. Grazing did not influence the effects of microsites on most measured herbaceous vegetation characteristics and ground cover variables. Available soil nutrients were not influenced by grazing, but the majority differed between microsites. The limited effect of moderate grazing on shrub-induced spatial heterogeneity provides evidence that sagebrush exerts a strong influence on patterns of soil nutrients and herbaceous vegetation in sagebrush-bunchgrass communities.

Journal article icon

Moderate grazing in fall-winter reduces exotic annual grasses in sagebrush-bunchgrass steppe

View article.

We compared moderate grazing during the off season with not grazing in five Wyoming big sagebrush−bunchgrass communities in the northern Great Basin. Treatments were applied annually for 10 yr (2009−2010 through 2018−2019). Plant community characteristics were measured after treatments had been applied from 6 to 10 yr. Off-season grazing reduced exotic annual grass density and cover. After a decade, annual grass cover was twofold greater in ungrazed areas. Sandberg bluegrass density increased with off-season grazing, but large bunchgrass density was similar between off-season grazed and ungrazed areas. Perennial and annual forb density and cover were similar between off-season grazed and ungrazed treatments. Biological soil crust cover was also similar between off-season grazed and ungrazed areas.

Narrow your search

Stay Connected