Wildland Urban Interface
View paper.
This study presents a novel risk-science approach that aligns wildfire response decisions, mitigation opportunities, and land management objectives by consciously integrating social, ecological and fire management system needs. We use fire-prone landscapes of the US Pacific Northwest as our study area, and report on and describe how three complementary risk-based analytic tools—quantitative wildfire risk assessment, mapping of suppression difficulty, and atlases of potential control locations—can form the foundation for adaptive governance in fire management. Together, these tools integrate wildfire risk with fire management difficulties and opportunities, providing a more complete picture of the wildfire risk management challenge. Leveraging recent and ongoing experience integrating local experiential knowledge with these tools, we provide examples and discuss how these geospatial datasets create a risk-based planning structure that spans multiple spatial scales and uses.
Visit conference website.
This year’s conference, Discover Your Role: Reducing Wildland Fire Risk will provide an in-depth exploration of how community members across the spectrum can effectively contribute to better fire outcomes and provide community wildfire resilience leaders with new knowledge and tools for engaging partners and the public.
One mechanism with which communities-at-risk from wildfire have addressed planning and adaptation to wildfire are Community Wildfire Protection Plans (CWPPs), which were created as part of the Healthy Forest Restoration Act in 2003. CWPPs are required to include measures to reduce hazardous fuels, reduce structural ignitability, and increase collaboration and outreach. Communities across the Western U.S. have used a wide range of approaches for developing CWPPs with varying outcomes. This webinar will provide results from a study that assessed CWPPs in Arizona and other western states. It will include results from an assessment of CWPP effectiveness in Arizona, results from a survey of CWPP program strategies in other western states, as well as lessons learned and recommendations for effective CWPP development, implementation, and management.
Access report.
Spot fires caused by wind-blown burning embers are a significant mechanism of fire spread in the wildland and Wildland-Urban Interface (WUI). Fire spread and structure ignition by embers can be characterized by three major processes or mechanisms: ember production, ember transport, and ember ignition of fuel. This study investigates ember production from selected wildland and structural fuels under a range of environmental conditions through full-scale, intermediate-scale, and small-scale laboratory experiments.
View the study.
In this study we used the 79 western US national forests to examine tradeoffs between forest management scenarios targeting wildfire risk to the wildland urban interface (WUI) and those meeting agency convertible volume production targets. We quantified production frontiers to measure how the efficiency of meeting harvest volume targets is affected by prioritizing treatments to areas that transmit fire to the WUI. The results showed strong tradeoffs and scale effects on production frontiers, and more importantly substantial variation among planning areas and national forests. Prioritizing treatments to reduce fire transmission to the WUI resulted in an average harvest volume reduction of about 248m3 per ha treated. The analysis also identified opportunities where both management objectives can be achieved. This work represents the first large-scale tradeoff analysis for key management goals in forest and fuel management programs on national forests.
Read the report.
In December of 2017, the Federal Emergency Management Agency (FEMA) Administrator requested the Department of Homeland Security DHS) Science and Technology (S&T) research new and emerging technology that could be applied to wildland fire incident response, given the loss of life that occurred in California during the fall of 2017 in Santa Rosa and Ventura.
In response to the request, DHS S&T—in collaboration with FEMA, the U.S. Fire Administration (USFA), and other key stakeholder experts—determined wildland urban interface (WUI) incidents and life-saving functions as the optimal areas for DHS S&T to explore technology innovation. As a result, S&T formed an Integrated Project Team (IPT) and initiated the WUI Fire Operational Requirements and Technology Capability Analysis Project. Over the course of the project, the IPT identified areas of innovation in wildland fire incident relating to wildland fire preparedness and mitigation and enhanced wildland fire suppression practices, including resistant infrastructure planning, building materials, and building codes. To meet the Administrator’s request, however, the IPT focused its efforts on requirements for improving operational capabilities and incident response to save lives in WUI fires.
This webinar will take a close look at FEMA’s burgeoning Building Resilient Infrastructure and Communities (BRIC) program and what the next steps in the effort will be. BRIC, which was recently funded as part of the Disaster Recovery Reform Act of 2018, focuses on public infrastructure projects that can lower risk and increase community resilience. As a disaster mitigation program, BRIC allows the agency to invest grant money in infrastructure projects before a disaster. To date, FEMA has collected more than 4,000 comments from members of the public, local and regional partners, and representatives of other federal agencies to ensure the program meets the needs of the entire community.
Eric Letvin, Deputy Assistant Administrator for Mitigation, Federal Emergency Management Agency presents.
This webinar explores the social challenges to implementing codes that support a resilient building stock. A public survey by University of Colorado Boulder researchers found that the public is willing to pay for more-resilient buildings, yet several social forces beyond cost pose obstacles to enhancing building-code performance objectives. Many builders, for instance, oppose any code changes that increase construction cost. Engineers might sometimes favor private interests over code changes, which can hinder consensus and support. For legislators, the future benefits of code changes aren’t immediate enough to be politically expedient. In short, even while the technical case for creating resilient building stock is strong, there are factors that must be overcome to implement it. This webinar will use several recent scholarly studies to examine the ethics and economics behind those factors and how we can address challenges head on.
Keith Porter, Research Professor, Civil, Environmental, and Architectural Engineering, University of Colorado Boulder presents.