Wildland Urban Interface

Webinar, video, audio icon

Five key areas around the home to examine for fire risk

View video (2:39)

Webinar, video, audio icon

Ready, set, go! and Camp Fire lessons learned videos

Access the short videos.

 

Journal article icon

Wildfire trends across the western US: Forest fires have increased in size, severity, and frequency across western forests

Access report.

Wildfire across the western US has increased in size, frequency, and severity since the 1950s. These changes are closely linked with increases in temperature and an increased frequency and intensity of drought. Historically, frequent low to moderate-severity fires dominated the fire regime in many western forests, maintaining low-density forests with larger trees. A history of fire exclusion, logging activity, grazing, and invasive species has led to an uncharacteristic build-up of forest fuels in many areas, increasing the susceptibility to large-scale, high-severity wildfire. The US has a history of fire suppression efforts that has exacerbated the problem by increasing the density of trees and fuel availability, and reduced the overall area burned by wildfires to levels that are below those that occurred before the beginning of the 20th century.

The western US is also experiencing larger, more severe fires that are often near communities. In recent decades, the build-up of forest fuels, a warmer and drier climate, and expansion of the wildland-urban interface (WUI) into forested areas has changed western landscapes and increased wildfire hazard. Federal policy and management have primarily focused on fire suppression and more recently on fuels reduction on some federal lands. Forest restoration and fuels reduction projects have had positive ecological impacts; however, the pace and scale of forest treatments is not keeping up with heightened wildfire activity across the West.

Journal article icon

Exposure complexity and community capacity to manage wildfire risk: Analysis of 60 western US communities

Access article.

We analyzed the relationship between predicted housing exposure to wildfire and local self-assessment of community competence to mitigate wildfire risks in 60 communities in the western US. Results generally demonstrate that (1) the number of sources of wildfire risk influences local housing exposure to wildfire, and (2) perceived community-competence is associated with predicted exposure to wildfire. We suggest that investments in ongoing updates to community risk planning and efforts to build multi-jurisdictional risk management networks may help to leverage existing capacity, especially in moderate capacity communities. The analysis improves the social-ecological understanding of wildfire risks and highlights potential causal linkages between community capacity and wildfire exposure.

Synthesis/Technical Report icon

Social vulnerability and wildfire in the WUI: A synthesis

Access synthesis.

The overall objective of this paper is to clarify areas of debate, clearly define and contrast disparate approaches, and synthesize findings that may help address vulnerability to wildfires and other natural hazards. While land managers and fire personnel might find it pertinent to approach biophysical and social issues separately, addressing both aspects of wildfire hazard can be productive for minimizing risk and empowering communities, neighborhoods, and households to prepare and recover from wildfire events. We aim to provide a practical grasp of social vulnerability research as it relates to wildfire hazards in order to advance its application by people involved in wildland fire management in their efforts to address the social diversity and complexity they face in their wildfire prevention, mitigation, and suppression activities.

Conference/meeting icon

Colorado Wildland Fire Virtual Conference

Visit conference website.

This year’s conference, Discover Your Role: Reducing Wildland Fire Risk will provide an in-depth exploration of how community members across the spectrum can effectively contribute to better fire outcomes and provide community wildfire resilience leaders with new knowledge and tools for engaging partners and the public.

Journal article icon

Understanding homeowners’ decisions to mitigate wildfire risk and create defensible space

View article.

This article analyses homeowners’ decisions to undertake fire-safe investments and create defensible space on their property using a unique dataset from 35 wildland–urban interface communities in Nevada. The dataset combines homeowner information from a mail survey with their observed fire-safe investments obtained through parcel-level hazard assessments. We find that homeowners’ self-reported mitigation expenditures are driven by their subjective beliefs about their wildfire risk, whereas observed defensible space status is driven by their costs of investment. We develop a theoretical model of a homeowner’s fire-safe investment decision that accounts for our empirical results.

Webinar, video, audio icon

Assessment of community wildfire protection plans in AZ and the western US

Webinar recording.

One mechanism with which communities-at-risk from wildfire have addressed planning and adaptation to wildfire are Community Wildfire Protection Plans (CWPPs), which were created as part of the Healthy Forest Restoration Act in 2003. CWPPs are required to include measures to reduce hazardous fuels, reduce structural ignitability, and increase collaboration and outreach. Communities across the Western U.S. have used a wide range of approaches for developing CWPPs with varying outcomes. This webinar will provide results from a study that assessed CWPPs in Arizona and other western states. It will include results from an assessment of CWPP effectiveness in Arizona, results from a survey of CWPP program strategies in other western states, as well as lessons learned and recommendations for effective CWPP development, implementation, and management.

Journal article icon

Tradeoffs between US national forest harvest targets and fuel management to reduce wildfire transmission to the WUI

View the study.

In this study we used the 79 western US national forests to examine tradeoffs between forest management scenarios targeting wildfire risk to the wildland urban interface (WUI) and those meeting agency convertible volume production targets. We quantified production frontiers to measure how the efficiency of meeting harvest volume targets is affected by prioritizing treatments to areas that transmit fire to the WUI. The results showed strong tradeoffs and scale effects on production frontiers, and more importantly substantial variation among planning areas and national forests. Prioritizing treatments to reduce fire transmission to the WUI resulted in an average harvest volume reduction of about 248m3 per ha treated. The analysis also identified opportunities where both management objectives can be achieved. This work represents the first large-scale tradeoff analysis for key management goals in forest and fuel management programs on national forests.

Synthesis/Technical Report icon

WUI fire: Analysis of gaps in operations and capabilities

Read the report.

In December of 2017, the Federal Emergency Management Agency (FEMA) Administrator requested the Department of Homeland Security DHS) Science and Technology (S&T) research new and emerging technology that could be applied to wildland fire incident response, given the loss of life that occurred in California during the fall of 2017 in Santa Rosa and Ventura.

In response to the request, DHS S&T—in collaboration with FEMA, the U.S. Fire Administration (USFA), and other key stakeholder experts—determined wildland urban interface (WUI) incidents and life-saving functions as the optimal areas for DHS S&T to explore technology innovation. As a result, S&T formed an Integrated Project Team (IPT) and initiated the WUI Fire Operational Requirements and Technology Capability Analysis Project. Over the course of the project, the IPT identified areas of innovation in wildland fire incident relating to wildland fire preparedness and mitigation and enhanced wildland fire suppression practices, including resistant infrastructure planning, building materials, and building codes. To meet the Administrator’s request, however, the IPT focused its efforts on requirements for improving operational capabilities and incident response to save lives in WUI fires.

Narrow your search

Can't find what you need?

Stay Connected