Research and Publications
View article.
This paper describes the ongoing development of a comprehensive set of vegetation reference conditions based on over 900 quantitative vegetation dynamic models and accompanying description documents for terrestrial ecosystems in the USA. These models and description documents, collaboratively developed by more than 800 experts around the country through the interagency LANDFIRE Program, synthesize fundamental ecological information about ecosystem dynamics, structure, composition, and disturbance regimes before European-American settlement. These products establish the first comprehensive national baseline for measuring vegetation change in the USA, providing land managers and policymakers with a tool to support vegetation restoration and fuel management activities at regional to national scales. Users have applied these products to support a variety of land management needs including exploring ecosystem dynamics, assessing current and desired conditions, and simulating the effects of management actions. In an era of rapid ecological change, these products provide land managers with an adaptable tool for understanding ecosystems and predicting possible future conditions.
View article.
This paper examines the effect of fire on small mammals and evaluate the relative sensitivity to fire among different groups using a systematic review methodology that included critiquing the literature with respect to survey design and statistical analysis. Overall, small mammal abundance is slightly higher, and demographic parameters more favourable, in unburnt sites compared to burnt sites. This was more pronounced in species with body size range of 101–1000 g and with habitat requirements that are sensitive to fire (e.g. dense ground cover): in 66.6 and 69.7% of pairwise comparisons, abundance or a demographic parameter were higher in unburnt than burnt sites. This systematic review demonstrates that there remains a continued focus on simple shifts in abundance with regards to effect of fire and small mammals, which limits understanding of mechanisms responsible for change. Body size and habitat preference were most important in explaining variation in small mammal species’ responses to fire.
View article.
Characterising the impacts of wildland fire and fire suppression is critical information for fire management decision-making. Here, we focus on decisions related to the rare larger and longer-duration fire events, where the scope and scale of decision-making can be far broader than initial response efforts, and where determining and demonstrating efficiency of strategies and actions can be particularly troublesome. We organize our review around key decision factors such as context, complexity, alternatives, consequences and uncertainty, and for illustration contrast fire management in Andalusia, Spain, and Montana, USA. Two of the largest knowledge gaps relate to quantifying fire impacts to ecosystem services, and modelling relationships between fire management activities and avoided damages. The relative magnitude of these and other concerns varies with the complexity of the socioecological context in which fire management decisions are made. To conclude our review, we examine topics for future research, including expanded use of the economics toolkit to better characterize the productivity and effectiveness of suppression actions, integration of ecosystem modelling with economic principles, and stronger adoption of risk and decision analysis within fire management decision-making.
View article.
This paper examines administrative policies and barriers to using outcome-based approaches to manage fire risk in Idaho through 70 semistructured interviews with permittees, BLM staff, and other agency and nongovernmental stakeholders in three Idaho BLM field areas. We analyzed how rules and norms in policy implementation contributed to perceptions of barriers within and among different field areas. Factors affecting perceptions of outcome-based rangeland management implementation included BLM staff tenure, permittee-agency relationships, beliefs about the efficacy of grazing to manage fire risk, and leadership and staff experience in navigating National Environmental Policy Act requirements or potential lawsuits. Differences in the informal institutions among field areas led to different interpretations of latitude found within formal institutions (“gray zones”) for implementation. This study highlights the importance of local context and the interactions between administrative policies and agency culture for implementing adaptive approaches to managing wildfire risk on public rangelands.
View article.
Our results underscore the importance of active and comprehensive management actions immediately following wildfire (i.e., seeding coupled with planting sagebrush), that might offset short-term impacts of wildfire by timing rapid recovery of sagebrush to meet short-term species’ habitat requirements. Burned leks likely have substantial immediate impacts that may extend beyond wildfire boundaries, especially if critical source habitats are removed. Such impacts could fragment habitat and disrupt connectivity, thereby affecting larger populations and possibly contributing to more widespread declines in sage-grouse populations.
View article.
Respondents identified numerous barriers, as well as recommendations for improving decision support systems (DSS) development and integration, specifically with respect to capacity, communication, implementation, question identification, testing, education and training, and policy, guidance, and authorities. These recommendations can inform DSS use for wildfire risk assessment and treatment prioritization to meet the goals of national policies and frameworks. Lastly, a framework for organizing spatial, pre-wildfire planning DSSs to support end-user understanding and use is provided.
View article.
Shrub cover in two experimental stands prior to burning was 38% and 59% and was 36% and 45% one-year post burn. In both stands shrub patch density increased, while area-weighted mean patch size and largest patch index decreased. Increased local percent cover of coarse woody material was associated with increased shrub consumption. These findings provide information for prescribed fire managers to help better anticipate shrub consumption and patchiness outcomes under similar conditions.
View article.
We need to spend less time searching for general rules and more time embracing the complexity and context-dependence within rangeland science. Rather than writing off findings that do not fit our current worldview, we should challenge ourselves to broaden our views in ways that reconcile multiple findings or multiple truths. It is possible we are all partly or mostly right, and we just need to figure out why, how, and in what contexts. There is value in doing research in a way that focuses on really listening to and respecting multiple perspectives so that the results we produce not only qualify as facts, but also as truths that many people can buy into and get behind.
View article.
Overall, findings highlight the role of different seasonal ranges on mule deer genetic connectivity, and show that anthropogenic features hinder connectivity. This study demonstrates the value of combining a large, genome-wide marker set with recent advances in landscape genomics to evaluate functional connectivity in a wide-ranging migratory species.
View article.
Cumulative overlap of species distributions revealed areas with greater potential community response to management. Within each species’ potential regional-level distribution, the grassland bird community generally responded negatively to cropland cover and vegetation productivity at local scales (up to 10 km of survey sites). Multiple species declined with increasing bare ground and litter cover, shrub cover, and grass height measured within sites.