Article / Book

Journal article icon

Pile burns as a proxy for high severity wildfire impacts on soil microbiomes

View article.

We sampled depth-resolved layers from fire-impacted soil and combusted litter and woody materials in a series of recent pile burn scars near West Yellowstone, Montana and nearby unburned mineral soil controls to assess whether the pile burn scars exhibited microbial signatures characteristic of forest soils impacted by recent high severity wildfire. Changes in soil carbon and nitrogen chemistry and patterns of microbial alpha and beta diversity broadly aligned with those observed following wildfire, particularly the enrichment of so-called ‘pyrophilous’ taxa. Furthermore, many of the taxa enriched in burned soils likely encoded putative traits that benefit microorganisms colonizing these environments, such as the potential for fast growth or utilization of pyrogenic carbon substrates. We suggest that pile burn scars may represent a useful proxy along the experimental gradient from muffle furnace or pyrocosm studies to largescale prescribed burns in the field to advance understanding of the soil (and related layers, like ash) microbiome following high severity wildfires, particularly when coupled with experimental manipulation. Finally, we discuss existing research gaps that experimentally manipulated pile burns could be utilized to address.

Journal article icon

Learning to burn: A case study on the redesign of federal Rx fire training in the US using the 12 levers of transfer effectiveness

View article.

Strategic development and implementation of burn boss training may increase the likelihood that burn bosses can safely and effectively implement prescribed burns. This article presents a case study for applying key adult learning methods to improve training effectiveness that can be applied to other training topics in and outside wildland fire management.

Journal article icon

Relative potential for stand persistence of riparian and upland aspen stands of a semi-arid montane landscape of the Southern Rocky Mountains

View article.

We investigated the relationship between aspen regeneration and site moisture availability potential using ecosystem type as a proxy. We hypothesized that aspen stands growing along perennial-flowing streams would support higher aspen regeneration densities than upland aspen stands. We compared stand structure, groundcover composition, and regeneration densities of nine riparian aspen stands with nine paired upland aspen stands in the Caribou-Targhee National Forest. Aspen regeneration densities were significantly higher in the riparian aspen stands (845. 3 + 318.7 stems ha-1) compared to the upland aspen stands (249.1 + 74.1 stems ha-1) for regeneration shorter than one meter (p = 0.0391). Riparian stands also exhibited significantly higher forb (p< 0.001) and graminoid (p < 0.001) cover compared to upland aspen stands, suggesting that riparian sites provided higher site moisture availability. We suggest that riparian areas may provide refugia for aspen in the future considering projections of increased incidence of acute drought.

Journal article icon

Phenology forecasting models for detection and management of invasive annual grasses

View article.

We created range-wide phenology forecasts for two problematic invasive annual grasses: cheatgrass, and red brome . We tested a suite of 18 mechanistic phenology models using observations from monitoring experiments, volunteer science, herbarium records, timelapse camera imagery, and downscaled gridded climate data to identify the models that best predicted the dates of flowering and senescence of the two invasive grass species. We found that the timing of flowering and senescence of cheatgrass and red brome were best predicted by photothermal time models that had been adjusted for topography using gridded continuous heat-insolation load index values. Phenology forecasts based on these models can help managers make decisions about when to schedule management actions such as grazing to reduce undesirable invasive grasses and promote forage production, quality, and biodiversity in grasslands; to predict the timing of greatest fire risk after annual grasses dry out; and to select remote sensing imagery to accurately map invasive grasses across topographic and latitudinal gradients. These phenology models also have the potential to be operationalized for within-season or within-year decision support.

Journal article icon

Ventenata dubia projected to expand in the western US despite future novel conditions

View article.

Distributions of both native and invasive species are expected to shift under future climate. Species distribution models (SDMs) are often used to explore future habitats, but sources of uncertainty including novel climate conditions may reduce the reliability of future projections. We explore the potential spread of the invasive annual grass ventenata (Ventenata dubia) in the western United States under both current and future climate scenarios using boosted regression tree models and 30 global climate models (GCMs). We quantify novel climate conditions, prediction variability arising from both the SDMs and GCMs, and the agreement among GCMs. Results demonstrate that currently suitable habitat is concentrated inside the invaded range of the northwest, but substantial habitat exists outside the invaded range in the Southern Rockies and southwestern US mountains. Future suitability projections vary greatly among GCMs, but GCMs commonly projected decreased suitability in the invaded range and increased suitability along higher elevations of interior mountainous areas.

 

Journal article icon

Lightning-ignited wildfires in the western US: Ignition precipitation and associated environmental conditions

View article.

Cloud-to-ground lightning with minimal rainfall (“dry” lightning) is a major wildfire ignition source in the western United States (WUS). Although dry lightning is commonly defined as occurring with <2.5 mm of daily-accumulated precipitation, a rigorous quantification of precipitation amounts concurrent with lightning-ignited wildfires (LIWs) is lacking. We combine wildfire, lightning and precipitation data sets to quantify these ignition precipitation amounts across ecoprovinces of the WUS. The median precipitation for all LIWs is 2.8 mm but varies with vegetation and fire characteristics. “Holdover” fires not detected until 2–5 days following ignition occur with significantly higher precipitation (5.1 mm) compared to fires detected promptly after ignition (2.5 mm), and with cooler and wetter environmental conditions. Further, there is substantial variation in precipitation associated with promptly-detected (1.7–4.6 mm) and holdover (3.0–7.7 mm) fires across ecoprovinces. Consequently, the widely-used 2.5 mm threshold does not fully capture lightning ignition risk and incorporating ecoprovince-specific precipitation amounts would better inform WUS wildfire prediction and management.

Journal article icon

The fastest-growing and most destructive fires in the US (2001 to 2020)

View article.

The most destructive and deadly wildfires in US history were also fast. Using satellite data, we analyzed the daily growth rates of more than 60,000 fires from 2001 to 2020 across the contiguous US. Nearly half of the ecoregions experienced destructive fast fires that grew more than 1620 hectares in 1 day. These fires accounted for 78% of structures destroyed and 61% of suppression costs($18.9 billion). From 2001 to 2020, the average peak daily growth rate for these fires more than doubled (+249% relative to 2001) in the Western US. Nearly 3 million structures were within 4 kilometers of a fast fire during this period across the US. Given recent devastating wildfires, understanding fast fires is crucial for improving firefighting strategies and community preparedness

Journal article icon

Annual grass invasions and wildfire deplete ecosystem carbon storage by >50% to resistant base levels

View article.

Ecological disturbance can affect carbon storage and stability and is a key consideration for managing lands to preserve or increase ecosystem carbon to ameliorate the global greenhouse gas problem. Dryland soils are massive carbon reservoirs that are increasingly impacted by species invasions and altered fire regimes, including the exotic-grass-fire cycle in the extensive sagebrush steppe of North America. Direct measurement of total carbon in 1174 samples from landscapes of this region that differed in invasion and wildfire history revealed that their impacts depleted soil carbon by 42-49%, primarily in deep horizons, which could amount to 17.1-20.0 Tg carbon lost across the ~400,000 ha affected annually. Disturbance effects on soil carbon stocks were not synergistic, suggesting that soil carbon was lowered to a floor-i.e. a resistant base-level-beneath which further loss was unlikely. Restoration and maintenance of resilient dryland shrublands/rangelands could stabilize soil carbon at magnitudes relevant to the global carbon cycle.

Journal article icon

Nontarget effects of herbicides on annual forbs and seeded grass in the Great Basin, US, partially offset by planting depth and application rate

View article.

We seeded perennial grass (Elymus elymoides) at multiple depths to determine susceptibility and resistance. Herbicides were applied at full and reduced rates to mimic the effect of litter in natural systems. We observed reductions in most non-native species in all treatments, but also extensive reductions of native annual forbs, although these were offset at lower application rates, and some species (e.g. Amsinckia tessellata and Microsteris gracilis) were less susceptible than others. Herbicides, particularly indaziflam, reduced E. elymoides emergence, but planting seeds at 2–3 cm depths improved emergence, particularly for imazapic, with 15–68% greater emergence than seeds planted at 1 cm. We suggest surveys for native annual forbs and resistant invaders before applying herbicides and field testing to determine whether reduced rates could provide weed control while maintaining annual forbs. We suggest planting E. elymoides at 2–3 cm when applying herbicides, an approach that may be effective for other species. Herbicide use can be an effective tool, but our results indicate that mitigation of nontarget effects will be needed to maintain native plant diversity.

Journal article icon

Patchy response of cheatgrass and nontarget to indaziflam and imazapic applied after wildfire in sagebrush

Read article.

Overall, indaziflam + imazapic had greater initial control of cheatgrass, but by 2023, both treatments led to similar ∼17 percentage-point reductions in cheatgrass cover. Cheatgrass individuals that “escaped” the herbicide treatment grew exceptionally large and fecund. There were no reductions in cover in any native vegetation type, including biocrusts, and nontarget increases in cover were observed for 1) deep-rooted perennial grasses treated with indaziflam + imazapic in the 2011 burn subregion and 2) the shallow-rooted Sandberg bluegrass (Poa secunda) treated with either herbicide in the 2011 or 2011 + 2019 burn subregions. Consideration of burn legacies, pretreatment landscape condition, and evenness of treatment application may improve restoration outcomes and help prioritize management allocation, timing, and treatment expectations.

Narrow your search

Stay Connected