Article / Book

Open book with lines simulating text on left and right pages

Aligning smoke management with ecological and public health goals

View article.

Past and current forest management affects wildland fire smoke impacts on downwind human populations. However, mismatches between the scale of benefits and risks make it difficult to proactively manage wildland fires to promote both ecological and public health. Building on recent literature and advances in modeling smoke and health effects, we outline a framework to more directly quantify and compare smoke impacts based on emissions, dispersion, and the size and vulnerability of downwind populations across time and space. We apply the framework in a case study to demonstrate how different kinds of fires in California’s Central Sierra Nevada have resulted in very different smoke impacts.

Open book with lines simulating text on left and right pages

Rethinking the wildland fire management system

View paper.

Using the Forest Service of the US Department of Agriculture (USDA) as a relevant test case for systemic investigation, this paper argues that fundamental changes in how the fire management community thinks about, learns from, plans for, and responds to wildland fires may be necessary. The intent is to initiate a broader dialog around the current and future state of wildland fire management.

Open book with lines simulating text on left and right pages

Wind erosion of post-fire landscapes

View article.

This paper presents a case study to demonstrate the ability of the modeling framework to capture the onset and dynamics of a post-fire dust event and then use the modeling framework to estimate particulate matter (PM) emissions from burn scars left by wildfires in U.S. western sagebrush landscapes during 2012. Modeled emissions from 1.2 million ha of burned soil totaled 32.1 Tg of dust as PM10 and 12.8 Tg as PM2.5. Despite the relatively large uncertainties in these estimates and a number of underlying assumptions, these first estimates of annual post-fire dust emissions suggest that post-fire PM emissions could substantially increase current annual PM estimates in the U.S. National Emissions Inventory during high fire activity years. Given the potential for post-fire scars to be a large source of PM, further on-site PM flux measurements are needed to improve emission parameterizations and constrain these first estimates.

Open book with lines simulating text on left and right pages

Climatic influences on establishment pulses of four Artemisia species in Nevada

View article.

Annual growth-ring analysis was used to determine the year of establishment and the relationship between recruitment and weather events. Results indicated stand ages and locations were different (P > 0.001) among species and subspecies, and years of recruitment were strongly correlated with local and hemispheric weather patterns. Linear and multiple regressions modeled recruitment pulses for all four species. Weather-based predictor variables indicated complex interactions between recruitment and climatic controls. Pacific Decadal Oscillation index variables were prominent predictors for all four species at their associated sites. Other important local weather variables included total annual precipitation the year before recruitment, the year of recruitment, and the year following recruitment. In Nevada and the Great Basin, it is imperative that successful sagebrush seeding technologies are discovered and implemented.

Open book with lines simulating text on left and right pages

Variation in sagebrush communities historically seeded with crested wheatgrass in the eastern Great Basin

View article.

In this study, a multivariate dataset was analyzed using principal components analysis to identify “defining factors” that best explained variation among sites. Variation was primarily attributed to an inverse relationship between crested wheatgrass and sagebrush abundance (R2 = 0.69; P < 0.0001) and their affinity for either silty or sandy soil textures, respectively, as well as a negative association between crested wheatgrass abundance and species diversity (R2 = 0.67; P < 0.0001). These results do not support the assumption that crested wheatgrass seedings uniformly remain in vegetation states with low diversity and poor sagebrush reestablishment over the long term (i.e., 43 − 63 yr). We suggest that a broader interpretation of plant community dynamics is needed while avoiding generalizations of how historically seeded Wyoming big sagebrush sites will respond over time.

Open book with lines simulating text on left and right pages

Established perennial vegetation provides high resistance to reinvasion by exotic annual grasses

View article.

In this study, exotic annual grass cover and density were greatly reduced in all treatments where perennial seedlings were planted compared with the control (no seedlings planted). Treatments including crested wheatgrass (Agropyron desertorum) generally limited annual grasses more than other treatments. Most notably, forage kochia (Bassia prostata) reduced exotic annual grasses less than crested wheatgrass and crested wheatgrass planted with forage kochia. This suggests that if forage kochia will be planted, it should be used in conjunction with perennial bunchgrasses in efforts to revegetate exotic annual grass − invaded sagebrush steppe. Established native vegetation also greatly reduced exotic annual grass reinvasion. Though some differences existed among established vegetation treatments, our study highlights that established perennial vegetation prevents redomination by invasives after exotic annual grass control.

Open book with lines simulating text on left and right pages

Assessing restoration and management needs for ecosystems invaded by exotic annual Bromus species – Chapter 12

View Chapter 12 of the book, Exotic brome-grasses in arid and semiarid ecosystems of the western US: causes, consequences, and management implications.

Invasive annual grass research and management in arid and semiarid ecosystems of the Western United States (USA) have historically focused on reducing weed abundance as opposed to ecosystem restoration, which addresses the underlying processes responsible for their persistence. Given the current impact of invasive annual grasses and their continued spread in this region, we identified common characteristics responsible for persistence of the most problematic exotic annual Bromus. For heavily invaded areas, these include transient, yet typically large seed banks, altered soil resource availability and litter production, displacement of native species, and frequent disturbance from fire. To better address these common characteristics for future management, we illustrate how an adaptive management framework can reduce existing uncertainty associated with the restoration of arid and semiarid ecosystems.

Access other chapters.

Open book with lines simulating text on left and right pages

Land uses, fire, and invasion: Exotic annual Bromus and human dimensions – Chapter 11

View Chapter 11 of the book, Exotic brome-grasses in arid and semiarid ecosystems of the western US: causes, consequences, and management implications.

Human land uses are the primary cause of the introduction and spread of exotic annual Bromus species. Initial introductions were likely linked to contaminated seeds used by homesteading farmers in the late 1880s and early 1900s. Transportation routes aided their spread. Unrestricted livestock grazing from the 1800s through the mid-1900s reduced native plant competitors leaving large areas vulnerable to Bromus dominance. Ecosystems with cooler and moister soils tend to have greater potential to recover from disturbances (resilience) and to be more resistant to Bromus invasion and dominance. Warmer and drier ecosystems are less resistant to Bromus and are threatened by altered fire regimes which can lead to Bromus dominance, impacts to wildlife, and alternative stable states.

Access other chapters.

Open book with lines simulating text on left and right pages

Plant community resistance to invasion by Bromus species: The roles of community attributes, Bromus interactions with plant communities, and Bromus traits – Chapter 10

View Chapter 10 of the book, Exotic brome-grasses in arid and semiarid ecosystems of the western US: Causes, consequences, and management implications.

The factors that determine plant community resistance to exotic annual Bromus species are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in particular ambient and soil temperatures, have significant effects on the ability of Bromus to establish and spread.

Access other chapters.

Open book with lines simulating text on left and right pages

Bromus response to climate and projected changes with climate change – Chapter 9

View Chapter 9 of the book, Exotic brome-grasses in arid and semiarid ecosystems of the western US: causes, consequences, and management implications.

A prominent goal of invasive plant management is to prevent or reduce the spread of invasive species into uninvaded landscapes and regions. Monitoring and control efforts often rely on scientific knowledge of suitable habitat for the invasive species. However, rising temperatures and altered precipitation projected with climate change are likely to shift the geographic range of that suitable habitat. Here, we review experimental and modeling studies of climatic limits to exotic annual Bromus distribution in the Intermountain West in the context of projections of future climate change.

Access other chapters.

Narrow your search

Stay Connected