Synthesis / Tech Report
View report.
In this report, guidelines are presented for restoring whitebark pine under future climates using the rangewide restoration strategy structure. The information to create the guidelines came from two sources: (1) a comprehensive review of the literature and (2) a modeling experiment that simulated various climate change, management, and fire exclusion scenarios. The general guidelines presented here are to be used with the rangewide strategy to address climate change impacts for planning, designing, implementing, and evaluating fine-scale restoration activities for whitebark pine by public land management agencies.
View report.
This study found that:
- Few changes in most of the measured masticated fuel bed properties were detected over the 10 years represented in the sample. This indicates that in dry environments, it may take at least 10 years for ecological processes to change fuel characteristics enough for adverse fire effects to be mitigated.
- Burning masticated fuel beds in a laboratory revealed that there is a great deal of heat that is pulsed into the soil that could cause major mortality to belowground systems. This is especially true in high loading fuel beds with duff layers present.
- All masticated fuel beds dried to equilibrium in less than seven days, indication that these quickly drying fuels can be readily susceptible to smoldering combustion after 5-7 days of drying.
- Existing fuel models (including 11, SB1, SB2 and two existing custom fuel models) were good at representing fire behavior, indicating that there is no need to develop new, custom fuel models for masticated fuel beds.
View report.
This report identified leks and larger scale populations in immediate need of management, based on the occurrence of two criteria: (1) crossing of a destabilizing threshold designed to identify significant rates of population decline at a particular nested scale; and (2) crossing of decoupling thresholds designed to identify rates of population decline at smaller scales that decouple from rates of population change at a larger spatial scale. This approach establishes how declines affected by local disturbances can be separated from those operating at larger scales (for example, broad-scale wildfire and region-wide drought). Given the threshold output from our analysis, this adaptive management framework can be implemented readily and annually to facilitate responsive and effective actions for sage-grouse populations in the Great Basin. The rules of the framework can also be modified to identify populations responding positively to management action or demonstrating strong resilience to disturbance. Similar hierarchical approaches might be beneficial for other species occupying landscapes with heterogeneous disturbance and climatic regimes.
View report.
This report evaluated the nesting and brood-rearing microhabitat factors that influence selection and survival patterns in the Great Basin using a large dataset of microhabitat characteristics from study areas spanning northern Nevada and a portion of northeastern California from 2009 to 2016. The spatial and temporal coverage of the dataset provided a powerful opportunity to evaluate microhabitat factors important to sage-grouse reproduction, while also considering habitat variation associated with different climatic conditions and areas affected by wildfire. The summary statistics for numerous microhabitat factors, and the strength of their association with sage-grouse habitat selection and survival, are provided in this report to support decisions by land managers, policy-makers, and others with the best-available science in a timely manner.
View report.
For this mapping process across the entire mapping extent, four sets of products are available, including (1) a shapefile representing accuracy results linked to mapping subunits; (2) binary rasters representing conifer presence or absence at a 1 × 1 m resolution; (3) a 30 × 30 m resolution raster representing percentages of conifer canopy cover within each cell from 0 to 100; and (4) 1 × 1 m resolution canopy cover classification rasters derived from a 50-m-radius moving window analysis. The latter two products can be reclassified in a geographic information system (GIS) into user-specified bins to meet different objectives, which include approximations for phases of encroachment. These products complement, and in some cases improve upon, existing conifer maps in the Western United States, and will help facilitate sage-grouse habitat management and sagebrush ecosystem restoration.
View report.
In this report, literature-based information and expert elicitation are used to define (a) components of sensitivity and exposure to climate change and (b) the capacity of these ecosystems to adapt to expected changes. Aspen ecosystems benefit from fire and quickly reproduce. Yet, aspen trees are susceptible to drought and heat that is projected to become more frequent and intense in the future. Some aspen-associated plant and animal species may benefit from the expected changes in disturbance regimes and stand structure, while others may experience population reductions or stress as a result of drought and heat. Overall, vulnerability is defined as moderate because although persistence of aspen ecosystems is likely, a dynamic spatial and temporal response to climate change is expected.
View report.
In this report, we review the ecohydrology of southwestern streams and share results from our study sites along the Middle Rio Grande to describe effects of hydrological changes, wildfire, and invasions on plant communities and riparian-nesting birds. We also examine climate change projections and output from population models to gauge the future of aridland riparian ecosystems in an increasingly arid Southwest.
View report.
This work combines a comprehensive literature review with extensive smoke exposure concentration data for wildland firefighters to estimate health risks specific to wildland fire smoke. First, we conducted a literature review to identify smoke components that present the highest health hazard potential, the mechanisms of their toxicity, and reviewed epidemiological studies to identify the current gaps in knowledge about the health impacts of wildland fire smoke exposure for firefighters and the public. Next, we examined wildland firefighter exposures, explored predictors of smoke exposures to determine factors influencing smoke exposure for wildland firefighters and estimated exposure to air pollutants using carbon monoxide (CO) as an indicator pollutant. Lastly, we estimated disease risk in wildland firefighters for exposure to particulate matter from smoke using firefighter specific breathing rates with existing exposure response relationship information for risk of lung cancer, ischemic heart disease and cardiovascular disease from cigarette smoking, which produces particulate matter with a similar size range.
View report and highlights.
Conditions such as dense vegetation and drought have resulted in more severe wildland fires in recent years, and some communities are experiencing the devastating effects of these fires. Federal agencies can collaborate with nonfederal stakeholders to reduce the risk of wildland fires. This is a key aspect of the National Cohesive Wildland Fire Management Strategy. The Government Accountability Office recommends that federal agencies work with the Wildland Fire Leadership Council—which provides oversight and leadership for the strategy—to develop measures to assess progress toward achieving the strategy’s goals.
View report.
This report describes the role of forest and grassland ecosystems in the carbon cycle and provides information for considering carbon as one of many objectives for land management activities.