Synthesis / Tech Report
View synthesis.
Frequent-fire forests of the western United States have undergone remarkable changes in structure, composition, and function due to historical exclusion of naturally occurring fire. Mechanized tree thinning to reduce forest density and fuel loads tends to be expensive and cannot be effectively implemented across all lands, and there is increasing interest in managing naturally ignited wildfires for meeting forest restoration objectives. To investigate general effectiveness of resource objective (RO) wildfires for restoring frequent-fire and associated forests of the western United States, a review of the related peer-reviewed literature was conducted.
View the synthesis.
Exotic grasses are a widespread set of invasive species that are notable for their ability to significantly alter key aspects of ecosystem function. Understanding the role and importance of these invaders in forested landscapes has been limited but is now rising, as grasses from Eurasia and Africa continue to spread through ecosystems of the Americas, Australia, and many Pacific islands, where they threaten biodiversity and alter various aspects of the fire regime. The ecological, social and economic impacts of the grass-fire cycle associated with species such as cheatgrass (Bromus tectorum) have been long recognized in aridlands such as the iconic sagebrush ecosystems of the western US. However, the damaging impacts of invasive grasses in forestlands have received considerably less attention. We review literature, conceptual models, model output, and empirical evidence that indicate grass invasion in forest ecosystems may be an important yet largely under-recognized phenomenon. In combination with climate change, wildfire, and overstory management, invasive grasses could create a “perfect storm” that threatens forest resilience. Invasive grasses can be successful in forested environments or develop strongholds within forested mosaics and could provide the literal seeds for rapid change and vegetation type conversion catalyzed by wildfire or changes in climate. Although invasive grass populations may now be on the edge of forests or consist of relatively rare populations with limited spatial extent, these species may disrupt stabilizing feedbacks and disturbance regimes if a grass-fire cycle takes hold, forcing large portions of forests into alternative nonforested states. In addition, forest management actions such as thinning, prescribed fire, and fuel reduction may actually exacerbate invasive grass populations and increase the potential for further invasion, as well as broader landscape level changes through increased fire spread and frequency. Lack of understanding regarding the ecological consequences and importance of managing invasive grasses as a fuel may lead to unintended consequences and outcomes as we enter an age of novel and rapid ecological changes. This paper focuses on the contributory factors, mechanisms, and interactions that may set the stage for unexpected forest change and loss, in an effort to raise awareness about the potential damaging impact of grass invasion in forested ecosystems.
Grasslands occur on all of the continents. They collectively constitute the largest ecosystem in the world, making up 40.5% of the terrestrial land area, excluding Greenland and Antarctica. Grasslands are not entirely natural because they have formed and developed under natural and anthropogenic pressures. Their importance now is to the variety of ecosystem services that they provide: livestock grazing areas, water catchments, biodiversity reserves, tourism sites, recreation areas, religious sites, wild food sources, and natural medicine sources. An important function of grasslands is their sequestration and storage of carbon (C). Mollisol soils of grasslands have deep organic matter horizons that make this vegetation type almost as important as forests for C fixation and storage. Fire has been and continues to be an important disturbance in grassland evolution and management. Natural wildfires have been a component of grasslands for over 300 million years and were important in creating and maintaining most of these ecosystems. Humans ignited fires over many millennia to improve habitat for animals and livestock. Prescribed fire practiced by humans is a component of modern grassland management. The incidence of wildfires in grasslands continues to grow as an issue as droughts persist in semi-arid regions. Knowledge of fire effects on grasslands has risen in importance to land managers because fire, as a disturbance process, is an integral part of the concept of ecosystem management and restoration ecology. Fire is an intrusive disturbance in both managed and wildland forests and grasslands. It initiates changes in ecosystems that affect the composition, structure, and patterns of vegetation on the landscape. It also affects the soil and water resources of ecosystems that are critical to overall ecosystem functions and processes.
Access report.
Wildfire across the western US has increased in size, frequency, and severity since the 1950s. These changes are closely linked with increases in temperature and an increased frequency and intensity of drought. Historically, frequent low to moderate-severity fires dominated the fire regime in many western forests, maintaining low-density forests with larger trees. A history of fire exclusion, logging activity, grazing, and invasive species has led to an uncharacteristic build-up of forest fuels in many areas, increasing the susceptibility to large-scale, high-severity wildfire. The US has a history of fire suppression efforts that has exacerbated the problem by increasing the density of trees and fuel availability, and reduced the overall area burned by wildfires to levels that are below those that occurred before the beginning of the 20th century.
The western US is also experiencing larger, more severe fires that are often near communities. In recent decades, the build-up of forest fuels, a warmer and drier climate, and expansion of the wildland-urban interface (WUI) into forested areas has changed western landscapes and increased wildfire hazard. Federal policy and management have primarily focused on fire suppression and more recently on fuels reduction on some federal lands. Forest restoration and fuels reduction projects have had positive ecological impacts; however, the pace and scale of forest treatments is not keeping up with heightened wildfire activity across the West.
This plan is intended to provide a shared vision for natural resource management and conservation in Nevada. The plan incorporates the existing “All Hands – All Lands” approach together with the recent Shared Stewardship Agreement signed by the State and Federal land management agencies in Nevada to guide the strategic direction for the management of natural resources across all lands in Nevada. To ensure this goal, NDF is asking natural resource management and conservation stakeholders and interested public to review and provide substantive comments that help advance the plan’s strategic direction.
The Northeastern California Plateaus Bioregion Science Synthesis reviews literature relevant to the ecology and management of the Great Basin ecosystems and dry pine forests of the Lassen and Modoc National Forests. Critical factors on these national forests are reduced water availability—expected to become more challenging as levels and patterns of precipitation and temperature change under climate variability—coupled with a high proportion of rangeland and open woodland whose vegetation community is influenced by grazing of livestock and wild animal populations. Conifer encroachment of rangelands and the densification of woodlands, a result of fire suppression, impact wildlife communities that rely on open woodlands and other habitats characterized by having overstories of low density. Sagebrush habitat, in particular, is threatened by fragmentation and conversion. Socioeconomic changes in the region include a transition in the economic base from extraction to that of consumption of amenity values, and the resulting fragmentation of landownership. The local human population is expected to continue its trend of decline, but increased pressure by recreationists from nearby expanding urban areas is forcing land managers to consider increasingly complex situations or actions integrating social, ecological, and economic factors. Indigenous peoples are assuming a greater role in the management of their lands. Finally, disturbance patterns, such as nonhistorical fire frequency and intensity levels, novel combinations of climate patterns, and the pervasive pressure of nonnative invasive species could result in future ecosystems different than those today, presenting additional managerial challenges. This synthesis is intended to serve as a science-based foundation that supports management of Northeastern California forests, woodlands, and rangelands.
View studies.
Collectively, these studies show that the Weed-Suppressive Bacteria P. flourescens — strains ACK55, D7, and MB906 — are not likely to be effective in controlling invasive exotic grasses in western U.S. rangelands. There were no negative effects to exotic annual grasses, perennial bunchgrasses, or total community cover within three or four years of treatment when WSB was applied in the field alone or in combination with herbicides. It is possible that new formulations or application techniques could lead to more consistent, desired effects; however the studies described above tested three strains across a wide range of conditions, and yet no consistent effects were observed.
View report.
Numerical weather prediction (NWP) models can produce high-resolution forecasts of gust front conditions, and identifying these conditions from the model outputs may provide enhanced fire weather guidance. Abrupt changes in wind direction and speed can dramatically impact wildfire development and spread. Most importantly, such changes can pose significant problems to firefighting efforts and have resulted in a number of fire fatalities over the years. Frequent causes of such wind shifts are thunderstorm and convective system outflows, known as gust fronts, and the identification and prediction of these present critical challenges for fire weather forecasters. Anticipating and warning of these phenomena in wildland fire situations thus represent opportunities for enhancing the safety of incident personnel and the effectiveness of the firefighting operations. With these considerations we have developed a software tool to identify and depict convective outflow boundaries in high-resolution numerical weather prediction (NWP) models to provide guidance for fire weather forecasting.
Access report.
Springs serve an ecologically important role as perennial water sources, essential habitat for native species, and support for stream flow. Spring developments on rangelands provide water to livestock and wildlife. Thoughtful design of sustainable developments will supply water to livestock and wildlife while maintaining the intrinsic ecological functions and values of springs. This guide addresses spring development project planning as well as long-term sustainable management of springs. The objectives of spring development design are (1) to retain hydrologic conditions in the developed spring habitat that are similar to undeveloped reference habitats and (2) to create a system that is easy to install and maintain. Report presents two gravity-flow development designs that incorporate flow-splitting devices to regulate environmental flows and levels and to work in a wide range of hydrologic conditions.
Access report.
This plan represents the culmination of an unprecedented four-year collaboration among state and federal agencies investigating the threats of invasive plants to the sagebrush biome. The strategic plan identifies opportunities to overcome these threats through messaging, collaboration, prioritization, data sharing and increasing capacity to effectively implement cutting-edge, scientifically based management approaches across the Western landscape.