Fire Regimes

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Historic fire frequency in mountain big sagebrush communities of the eastern Great Basin and Colorado Plateau

View report.

This report found that big sagebrush recovery following fire over a broad regional scale suggests an average recovery time of 25 to 35+ years. However, there was much variation in recovery rate associated with the timing of precipitation relative to the particular fire event. We found that precipitation in the pre-fire growing season was positively related to post-fire recovery of mountain big sagebrush, and that precipitation in the late winter following fire was similarly positively related to recovery rate.

Open book with lines simulating text on left and right pages

Forest fires: Burn out

View article.

This Nature article discusses large, severe fires, climate change, insect outbreaks, and recovery of western forests with USGS scientist, Craig Allen and WERC scientist, Nate Stephenson.  on the conversion of forest ecosystems due to climate change and altered fire regimes.

 

Open book with a bar chart on left page and line graph and lines simulating text on the right page

A range-wide restoration strategy for whitebark pine

View report.

This report outlines a range-wide strategy for maintaining whitebark pine populations in high mountain areas based on the most current knowledge of the efficacy of techniques and differences in their application across communities. The strategy is written as a general guide for planning, designing, implementing, and evaluating fine-scale restoration activities for whitebark pine by public land management agencies, and to encourage agency and inter-agency coordination for greater efficiency. The strategy is organized into six scales of implementation, and each scale is described by assessment factors, restoration techniques, management concerns, and examples.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Resistance to invasion and resilience to fire in desert shrublands of North America

View synthesis.

This synthesis investigates the resistance and resilience differences among the cold and hot desert shrublands of North America. Differences are largely determined by spatial and temporal patterns of productivity but also are affected by ecological memory, severity and frequency of disturbance, and feedbacks among invasive species and disturbance regimes. Strategies for preventing or managing invasive plant/fire regimes cycles in desert shrublands include: 1) conducting periodic resource assessments to evaluate the probability of establishment of an altered fire regime; 2) understanding ecological thresholds associated within invasion resistance and fire resilience that characterize transitions from desirable to undesirable fire regimes; and 3) prioritizing management activities based on resistance of areas to invasion and resilience to fire.

Open book with lines simulating text on left and right pages

Managing fire and fuels in a warmer climate

View article.

This paper provides a historical perspective on fire in the Pacific Northwest. A warmer climate could bring more fire to the westside of the Cascade Range where summers are typically dry and will probably become drier. We can also expect longer fire seasons. The biggest concern for the future will be an increase in extreme weather events, which can lead to conditions that produce large and rapidly spreading wildfire.

Open book with lines simulating text on left and right pages

Fire as a restoration tool: A decision framework for predicting the control or enhancement of plants using fire

View article.

This paper provides a decision framework that integrates fire regime components, plant growth form, and survival attributes to predict how plants will respond to fires and how fires can be prescribed to enhance the likelihood of obtaining desired plant responses.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Cumulative watershed effects of fuel management in the western United States

View synthesis.

This synthesis contains 14 chapters that cover fire and forests, machinery, erosion processes, water yield and quality, soil and riparian impacts, aquatic and landscape effects, and predictive tools and procedures. These chapters provide an overview of our current understanding of the cumulative watershed effects of fuel management in the western United States.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Ecological effects of prescribed fire season: A literature review and synthesis for managers

View report.

This study compared historical and prescribed fire regimes for different regions in the United States and synthesized literature on season of prescribed burning. In regions and vegetation types where considerable differences in fuel consumption exist among burning seasons, the effects of prescribed fire season appears to be driven more by fire-intensity differences among seasons than by phenology. Where fuel consumption differs little among burning seasons, the effect of phenology or growth stage of organisms is often more apparent.

Synthesis/Technical Report icon

Invasive plants and fire in the deserts of North America

View synthesis.

This synthesis discusses that fire can be used to either control invasive species or to restore historical fire regimes. However, the decision to use fire as a management tool must consider the potential interrelationships between fire and invasive species. Historical fire regimes did not occur in the presence of many invasive plants that are currently widespread, and the use of fire may not be a feasible or appropriate management action if fire-tolerant invasive plants are present. The management of fire and invasive plants must be closely integrated for each to be managed effectively.

Narrow your search

Stay Connected