Fire Regimes
View Chapter 11 of the book, Exotic brome-grasses in arid and semiarid ecosystems of the western US: causes, consequences, and management implications.
Human land uses are the primary cause of the introduction and spread of exotic annual Bromus species. Initial introductions were likely linked to contaminated seeds used by homesteading farmers in the late 1880s and early 1900s. Transportation routes aided their spread. Unrestricted livestock grazing from the 1800s through the mid-1900s reduced native plant competitors leaving large areas vulnerable to Bromus dominance. Ecosystems with cooler and moister soils tend to have greater potential to recover from disturbances (resilience) and to be more resistant to Bromus invasion and dominance. Warmer and drier ecosystems are less resistant to Bromus and are threatened by altered fire regimes which can lead to Bromus dominance, impacts to wildlife, and alternative stable states.
View fact sheet.
Paleovegetation studies show that even prior to anthropogenic influence, sage steppe communities were dynamic, and in some cases, susceptible to replacement by other vegetation communities (including forests) under changing climatic conditions.
View study.
This study reviewed published studies on reburns in fire-adapted ecosystems of the world, including temperate forests of North America, semi-arid forests and rangelands, tropical and subtropical forests, grasslands and savannas, and Mediterranean ecosystems. To date, research on reburns is unevenly distributed across the world with a relative abundance of literature in Australia, Europe and North America and a scarcity of studies in Africa, Asia and South America. This review highlights the complex role of repeated fires in modifying vegetation and fuels, and patterns of subsequent wildfires. In fire-prone ecosystems, the return of fire is inevitable, and legacies of past fires, or their absence, often dictate the characteristics of subsequent fires.
Access the data.
The relationship between climate and wildfire area burned suggests how fire regimes may respond to a changing climate. This West-wide data publication contains a 27-year record (1980-2006) of climatological variables used to develop statistical models of area burned that can be projected into the future. We provide a separate file for each of the 56 Bailey’s ecosections (Bailey 2016) across the West, with annual area burned and 112 climate predictor variables such as evapotranspiration, precipitation, relative humidity, soil moisture, snow-water equivalent, minimum and maximum temperature, and vapor pressure deficit. These historical and future hydroclimate projections and historical fire area burned data were derived for McKenzie and Littell (2016).
Access website.
A resource for firefighters, fire managers, the public, and anyone who may be interested in wildfire’s effect on the sagebrush-steppe ecosystem.
View guide.
This guide is designed to provide direction on the critique and modification of LANDFIRE geospatial data products for local applications. It is not so much a “cookbook” or “how-to” guide, as the specifics vary greatly by data product, intended use, scale, and location. Rather, it presents primary considerations for using and modifying the data for use in local applications and provide examples and demonstrations of available tools and methods for completing common critique and modification tasks.
View article.
This KQED Science article indicates that since 1600, the way humans have used land in the Sierra has had more effect on fire behavior than climate change. Valerie Trouet, associate professor of dendrochronology at the University of Arizona and lead coauthor of a study about humans and fire, suggests that land managers and owners can affect fire behavior through activities that make forests more resilient.
View article.
This study provides quantitative evidence linking long-term declines of sage-grouse to chronic effects of wildfire. Projected declines may be slowed or halted by targeting fire suppression in remaining areas of intact sagebrush with high densities of breeding sage-grouse.
Access data review.
The purpose of the Data Product Review website is to provide a place where people can work through a review process of various LANDFIRE data products and a method for submitting feedback and suggestions on a number of LANDFIRE data products in a guidebook structure. The site is based on a content management platform with structured content for a dynamic web experience. The feedback and suggestions will be reviewed both within and external to LANDFIRE and potentially improve future mapping updates and remaps.
View report.
The Integrated Rangeland Fire Management Strategy outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit implementation of effective strategies to meet current management challenges. The tasks and actions identified in the Strategy address several broad topics related to management of the sagebrush ecosystem. This science plan is organized around these topics and specifically focuses on fire, invasive plant species and their effects on altering fire regimes, restoration, sagebrush and greater sage-grouse (Centrocercus urophasianus), and climate and weather.