Fuels & Fuel Treatments

Journal article icon

Not all fuel-reduction treatments degrade biocrusts: Herbicides cause mostly neutral to positive effects on cover of biocrusts

View article.

This study looked at sites with high cover of biocrusts prior to treatments, it demonstrates positive effects of the herbicide, tebuthiuron on lichens with an increase in cover of 10% and trending towards slightly negative effects on moss cover. Across plots, imazapic trended towards a decrease in lichen and moss cover without being statistically significant. Mowing and prescribed fire reduced cover of mosses, with the latter leading to greater declines across sites (declines of 18% vs. 32%). Reductions in moss cover mirrored gains in cover of bare soil, which is associated with increased risk of invasion by grasses responsible for increasing fire risk. The study demonstrates that the use of herbicides simultaneously reduces fuels and maintains greater cover of lichens and mosses compared with other fuel‐reduction treatments, possibly reducing risk of invasion by annual grasses that are responsible for increasing fire risk.

Webinar, video, audio icon

Wildfire preparedness and prevention

Webinar recording.

Description: Oregon State University’s Forestry & Natural Resources Extension Fire Program and its partners present a webinar series on Wildfire Preparedness and Prevention in Oregon. The first of three webinars focuses on wildfire awareness. What is the wildfire problem? What are the current conditions? How could the COVID-19 pandemic affect wildfire response? How can we prevent wildfires from starting? These are questions that will be addressed by a panel of speakers.

Presenters:
Mike Totey, Oregon Department of Forestry
Daniel Leavell, Oregon State University
Kristin Babbs, Keep Oregon Green

Journal article icon

Can prescribed fire do the work we hired it to do?

Access brief.

Forest Service researchers Becky Kerns and Michelle Day conducted a long-term experiment in the Malheur National Forest, Oregon, to assess how season and time between prescribed burns affect understory plant communities in ponderosa pine forests. They found that some native plants persisted and recovered from fire but didn’t respond vigorously, while invasive species tended to spread. These findings may help forest managers design more effective prescribed-fire treatments and avoid unintended consequences.

Journal article icon

Short- and long-term effects of ponderosa pine fuel treatments intersected by the Egley Fire Complex, OR

View article.

Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after the 2007 Egley Fire Complex in Oregon, USA. We also assessed short- and long-term fuel treatment impacts on field-measured attributes one and nine years post fire.

Journal article icon

Prescribed fire science: The case for a refined research agenda

View article.

We argue that prescribed fire science requires a fundamentally different approach to connecting related disciplines of physical, natural, and social sciences. We also posit that research aimed at questions relevant to prescribed fire will improve overall wildland fire science and stimulate the development of useful knowledge about managed wildfires. Because prescribed fires are increasingly promoted and applied for wildfire management and are intentionally ignited to meet policy and land manager objectives, a broader research agenda incorporating the unique features of prescribed fire is needed. We highlight the primary differences between prescribed fire science and wildfire science in the study of fuels, fire behavior, fire weather, fire effects, and fire social science. Wildfires managed for resource benefits (“managed wildfires”) offer a bridge for linking these science frameworks. A recognition of the unique science needs related to prescribed fire will be key to addressing the global challenge of managing wildland fire for long-term sustainability of natural resources.

Journal article icon

Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires

View paper.

This study evaluated drivers of fire severity and fuel treatment effectiveness in the 2014 Carlton Complex, a record‐setting complex of wildfires in north‐central Washington State. All treatment areas burned with higher proportions of moderate and high severity fire during early fire progressions, but thin and underburn, underburn only, and past wildfires were more effective than thin‐only and thin and pile burn treatments. Treatment units had much greater percentages of unburned and low severity area in later progressions that burned under milder fire weather conditions, and differences between treatments were less pronounced. Our results provide evidence that strategic placement of fuels reduction treatments can effectively reduce localized fire spread and severity even under severe fire weather. During wind‐driven fire spread progressions, fuel treatments that were located on leeward slopes tended to have lower fire severity than treatments located on windward slopes. As fire and fuels managers evaluate options for increasing landscape resilience to future climate change and wildfires, strategic placement of fuel treatments may be guided by retrospective studies of past large wildfire events.

Synthesis/Technical Report icon

Modeling long-term effects of fuel treatments on fuel loads and fire regimes in the Great Basin

Access summary and report.

The primary objective of this study was to explore the application of a dynamic global vegetation model (DGVM), the Ecosystem Demography (EDv2.2), to understand vegetation dynamics and ecosystem productivity in varying climate and fire scenarios. Most vegetation models do not represent sagebrush’s physical and physiological functions. Thus, we developed a sagebrush plant functional type (PFT) to use in modeling. Associated with this, the researchers performed a series of analyses and evaluations of the sagebrush and in the context of scenarios under natural (undisturbed) and disturbed (fire) environments.

  • Results indicate that a number of sagebrush parameters are most sensitive to how productive the plant is (in our model). These include specific leaf area (SLA), stomatal slope, fine root turnover rate, cuticular conductance, and maximum carboxylation rate. These findings allow future sagebrush modeling efforts to further refine these parameters in different environments.
  • The researchers comparisons between model runs and field data from Reynold Creek Experimental Watershed (RCEW), show good agreement. Improvements are needed to refine the model with additional PFTs representative of a range of elevations in the Great Basin.
  • The researchers fire scenario modeling suggested that fire substantially reduced shrub gross primary production (GPP) and it took several decades before it was restored to pre-fire conditions. Grass GPP, however, responded more quickly in post-fire conditions. While these processes are representative of field observations and other studies, additional PFTs and improvement in fire routines in the model will provide for a better prognosis of future ecosystem dynamics of the sagebrush-steppe.
Synthesis/Technical Report icon

A review of PJ woodlands and new literature

Visit the new PJ website maintained by Rick Miller.

View the complete pinyon-juniper synthesis

View fact sheet on pinyon-juniper ecology
View fact sheet on pinyon-juniper history
View fact sheet on pinyon-juniper ecohydrology
View fact sheet on pinyon-juniper management and restoration

This synthesis reviews current knowledge of pinyon and juniper ecosystems, in both persistent and newly expanded woodlands, for managers, researchers, and the interested public. We draw from a large volume of research papers to centralize information on these semiarid woodlands. The first section includes a general description of both the Great Basin and northern Colorado Plateau. The ecology section covers woodland and species life histories, biology, and ecology and includes a detailed discussion of climate and the potential consequences of climate change specific to the Great Basin and Colorado Plateau. The history section discusses 20,000 years of woodland dynamics and geographic differences among woodland disturbance regimes and resilience. The ecohydrology section discusses hydrologic processes in woodlands that influence soil conservation and loss; water capture, storage, and release; and the effect that woodland structure and composition have on these processes. The final section, restoration and management, covers the history of woodland management, the different methods used, the advantages and disadvantages of different vegetation treatments, and posttreatment vegetation responses. We also discuss successes and failures and key components that determine project outcomes important for consideration when restoring ecosystem function, integrity, and resilience.

Journal article icon

Cost-effective fuel treatment planning: Theoretical justification and case study

View article.

Modelling the spatial prioritization of fuel treatments and their net effect on values at risk is an important area for applied work as economic damages from wildfire continue to grow. We model and demonstrate a cost-effective fuel treatment planning algorithm using two ecosystem services as benefits for which fuel treatments are prioritized. We create a surface of expected fuel treatment costs to incorporate the heterogeneity in factors affecting the revenue and costs of fuel treatments, and then prioritize treatments based on a cost-effectiveness ratio to maximize the averted loss of ecosystem services from fire. We compare treatment scenarios that employ cost-effectiveness with those that do not, and use common tools and models in a case study of the Sisters Ranger District on the Deschutes National Forest in central Oregon.

Conference/meeting icon

Oregon Forest Health: State of the State 2020 Conference

Visit conference website.

The Forest Health in Oregon: State of the State 2020 conference was February 26-27 at the LaSells Stewart Center on the campus of Oregon State University in Corvallis, OR. Geared to foresters, forest managers, woodland owners, students, and others with an interest in forest health, the conference provided a blend of current information and practical applications on how to manage a healthy forest.

Narrow your search

Stay Connected