Invasive Species
View article.
Sagebrush ecosystems of western North America are experiencing widespread loss and degradation by invasive annual grasses. Positive feedbacks between fire and annual grasses are often invoked to explain the rapid pace of these changes, yet annual grasses also appear capable of achieving dominance among vegetation communities that have not burned for many decades. Using a dynamic, remotely sensed vegetation dataset in tandem with remotely sensed fire perimeter and burn severity datasets, we examine the role of fire in transitions to and persistence of annual grass dominance in the U.S. Great Basin over the past 3 decades. Although annual grasses and wildfire are so tightly associated that one is rarely mentioned without the other, our findings reveal surprisingly widespread transformation of sagebrush ecosystems by invasive annual grasses in the absence of fire. These findings are discussed in the context of strategic management; we argue a pivot from predominantly reactive management (e.g., aggressive fire suppression and post-fire restoration in heavily-infested areas) to more proactive management (e.g., enhancing resistance and managing propagule pressure in minimally-invaded areas) is urgently needed to halt the loss of Great Basin sagebrush ecosystems.
View article.
Native species that are abundant and persistent across disturbance-succession cycles can affect recovery and restoration of plant communities, especially in drylands. In the sagebrush-steppe deserts of North America, restoring deep-rooted perennial bunchgrasses (DRPBGs) is key to the strategy for breaking an increasingly problematic cycle of wildfire promoted by exotic annual grasses (EAGs) and displacement of perennials by post-fire increases in EAGs. We asked how Sandberg bluegrass (Poa secunda)—a common native grass that shares traits with EAGs such as resilience to disturbance and rapid, shallow-rooted, early season growth—(1) recovered after wildfire, (2) responded to different combinations of native-plant seedings of DRPBGs and EAG-targeting herbicides; and (3) in turn, related to DRPBG recovery.
Webinar recording.
In this webinar, a panel of scientists and practitioners will discuss a number of management techniques and research questions being utilized or tested in an effort to reduce the presence of introduced grasses and restore the historic fire regime. These include:
- Researching whether fire historically maintained the clumpy pattern of native vegetation in a self-perpetuating cycle.
- Reducing the risk of wildfire severity and extent, retaining native plant communities, and maintaining ecological processes in dry desert systems through a variety of invasive species removal techniques.
- Producing fire breaks, or strips of treatment intended to repress the forward progress of wildfires, through restoration of native vegetation patchiness and pruning of native woody species.
- Utilizing new technologies to detect invasive grasses and monitor their spread, assess treatment and cost-effectiveness, and present results from a networked experiment that tests vegetation management practices across the southwestern US.
View article.
More frequent, larger, and severe wildfires necessitate greater resources for fire-prevention, fire-suppression, and postfire restoration activities, while decreasing critical ecosystem services, economic and recreational opportunities, and cultural traditions. Increased flexibility and better prioritization of management activities based on ecological needs, including commitment to long-term prefire and postfire management, are needed to achieve notable reductions in uncharacteristic wildfire activity and associated negative impacts. Collaboration and partnerships across jurisdictional boundaries, agencies, and disciplines can improve consistency in sagebrush-management approaches and thereby contribute to this effort. Here, we provide a synthesis on sagebrush wildfire trends and the impacts of uncharacteristic fire regimes on sagebrush plant communities, dependent wildlife species, fire-suppression costs, and ecosystem services. We also provide an overview of wildland fire coordination efforts among federal, state, and tribal entities.
View brief.
Wildfires burned more area on non-forested lands than forested lands over the past 20 years. This was true for all land ownerships in CONUS and the western US. Burned area increased over the 20-year time period for both non-forest and forest. Across CONUS, annual area burned was higher on non-forest than forests for 14 of the past 21 years (Fig. 1), and total area burned was almost 3,000,000 ha more in non-forest than in forest. For the western US, total burned area was almost 1,500,000 ha more in non-forest than in forest. From a federal agency perspective, approximately 74% of the burned area on Department of the Interior (DOI) lands occurred in non-forest and 78% of the burned area on US Forest Service (FS) lands occurred in the forest.
Human population growth and accessibility from cities shape rangeland condition in the American West
View article.
Human population growth contributes to the decline of sagebrush-steppe rangelands. More accessible rangelands from population centers have higher quality. Open space preservation provides opportunities for rangeland conservation in cities. Coordinated conservation strategies are necessary to protect rangeland ecosystems.
Pre-fire grazing and herbicide treatments can affect post-fire vegetation in a Great Basin rangeland
View article.
This study found grazing and herbicide effects were consistent across cheatgrass biomass, count, and cover. Spring grazing reduced cheatgrass more effectively than fall grazing; however, this effect was detected primarily outside of the seeding treatments. Herbicide overall and in conjunction with grazing reduced cheatgrass and fuel loads. Among seeding treatments, seed mixtures proved more effective than monocultures for reducing both cheatgrass count and cover, particularly when combined with low seed rate. However, many seeding approaches resulted in higher cheatgrass dominance, and thus higher fuel loads.
View article.
Black gravel increased mean temperatures of the surface soil by 1.6 and 2.6 °C compared to white gravel in Cheyenne and Boise, respectively, causing 21–24 more days with soil temperatures > 0 °C, earlier cheatgrass germination, and up to 2.8-fold increases in cheatgrass height. Higher seeding density of cheatgrass led to 1.4-fold taller plants on black gravel plots at both sites, but not white gravel at the Boise site, indicating a possible thermal benefit or reduction of water demand due to plant clustering in warmer treatments.
View article.
Here, we examine how the ventenata invasion alters simulated fire across forest-mosaic landscapes of the 7 million ha Blue Mountains Ecoregion using the large fire simulator (FSim) with custom fuel landscapes: present-day invaded versus historic uninvaded. Invasion increased simulated mean fire size, burn probability, and flame lengths throughout the ecoregion, and the strength of these impacts varied by location and scale. Changes at the ecoregion scale were relatively modest given that fine fuels increased in only 2.8% of the ecoregion where ventenata invaded historically fuel-limited vegetation types. However, strong localized changes were simulated
within invaded patches (primarily dwarf-shrublands) and where invasion facilitated fire spread into nearby forests.