Fuels & Fuel Treatments
View brief.
Large wildfires need four key ingredients to burn, not just one. Ignitions, fuels, and drought thresholds must be crossed at the same time, enhanced by anomalous weather events such as foehn winds. But how do these ingredients, or drivers, fit together in various ecosystems? In this important concept paper, Pausas and Keeley (2021) outline the mechanistic flow of these complex drivers for fire prone ecosystems and illustrate this in the figure below (Fig.1). In brief, the fire weather for a given ecosystem helps to push the other three essential driver thresholds, or saturation points, down. With ignitions, fuel continuity, and drought saturation points simultaneously lowered by the right weather, wildfire will be triggered.
Access the MRLC Rangeland Viewer.
View synthesis.
This synthesis reviews current knowledge of pinyon and juniper ecosystems, in both persistent and newly expanded woodlands, for managers, researchers, and the interested public. We draw from a large volume of research papers to centralize information on these semiarid woodlands. The first section includes a general description of both the Great Basin and northern Colorado Plateau. The ecology section covers woodland and species life histories, biology, and ecology and includes a detailed discussion of climate and the potential consequences of climate change specific to the Great Basin and Colorado Plateau. The history section discusses 20,000 years of woodland dynamics and geographic differences among woodland disturbance regimes and resilience. The ecohydrology section discusses hydrologic processes in woodlands that influence soil conservation and loss; water capture, storage, and release; and the effect that woodland structure and composition have on these processes. The final section, restoration and management, covers the history of woodland management, the different methods used, the advantages and disadvantages of different vegetation treatments, and posttreatment vegetation responses. We also discuss successes and failures and key components that determine project outcomes important for consideration when restoring ecosystem function, integrity, and resilience.
Webinar recording.
A year ago, the Landscape Fire and Resource Planning Management Tools (LANDFIRE) Program released its 2016 Remap for the conterminous United States (CONUS). The update was the most significant in LANDFIRE’s 16-year history, a ground-up rebuild of the base map to reflect 2016 land surface conditions that included a host of improvements to its 20-plus GIS mapping layers.
Because three key thresholds must be crossed all at once for a wildfire to start, avoiding just one of these thresholds─ ignitions, drought, or continuous fuels (Fig.1)─ could significantly reduce the likelihood of wildfire. As climate change makes fire weather more common everywhere, managing ignitions where wind is problematic and managing fuels where drought is problematic will help to keep stochastic, out-of-regime fires contained. Where fire management tools won’t help, a fire danger zone should be designated to reduce human activity and development, much like volcano or flooding zone designations.
Webinar recording.
Utah State University Research Landscapes will address the latest in wildfire science and management, including:
Controlling aspects of the “fire triangle.”
Using fire as a tool to limit “disaster fires.”
Managing fuel to reduce severity of fires.
Focusing less on the number of acres burned and more on human impact of fires.
The event will feature a presentation by Dr. Larissa Yocom, USU assistant professor of wildland resources and Utah’s only dedicated wildfire ecologist. Her presentation will be followed by a live question-and-answer session.
View article.
This paper describes the ongoing development of a comprehensive set of vegetation reference conditions based on over 900 quantitative vegetation dynamic models and accompanying description documents for terrestrial ecosystems in the USA. These models and description documents, collaboratively developed by more than 800 experts around the country through the interagency LANDFIRE Program, synthesize fundamental ecological information about ecosystem dynamics, structure, composition, and disturbance regimes before European-American settlement. These products establish the first comprehensive national baseline for measuring vegetation change in the USA, providing land managers and policymakers with a tool to support vegetation restoration and fuel management activities at regional to national scales. Users have applied these products to support a variety of land management needs including exploring ecosystem dynamics, assessing current and desired conditions, and simulating the effects of management actions. In an era of rapid ecological change, these products provide land managers with an adaptable tool for understanding ecosystems and predicting possible future conditions.
View article.
This paper examines administrative policies and barriers to using outcome-based approaches to manage fire risk in Idaho through 70 semistructured interviews with permittees, BLM staff, and other agency and nongovernmental stakeholders in three Idaho BLM field areas. We analyzed how rules and norms in policy implementation contributed to perceptions of barriers within and among different field areas. Factors affecting perceptions of outcome-based rangeland management implementation included BLM staff tenure, permittee-agency relationships, beliefs about the efficacy of grazing to manage fire risk, and leadership and staff experience in navigating National Environmental Policy Act requirements or potential lawsuits. Differences in the informal institutions among field areas led to different interpretations of latitude found within formal institutions (“gray zones”) for implementation. This study highlights the importance of local context and the interactions between administrative policies and agency culture for implementing adaptive approaches to managing wildfire risk on public rangelands.
View article.
Shrub cover in two experimental stands prior to burning was 38% and 59% and was 36% and 45% one-year post burn. In both stands shrub patch density increased, while area-weighted mean patch size and largest patch index decreased. Increased local percent cover of coarse woody material was associated with increased shrub consumption. These findings provide information for prescribed fire managers to help better anticipate shrub consumption and patchiness outcomes under similar conditions.
View article.
In this communication we briefly review and illustrate how forest roads relate to recent advances in operationally focused wildfire decision support. We focus on two interrelated products used on the National Forest System and adjacent lands throughout the western USA: potential wildland fire operational delineations (PODs) and potential control locations (PCLs). We use real-world examples from the Arapaho-Roosevelt National Forest in Colorado, USA to contextualize these concepts and illustrate how fire analytics and local fire managers both identified roads as primary control features. Specifically, distance to road was identified as the most important predictor variable in the PCL boosted regression model, and 82% of manager-identified POD boundaries aligned with roads. Lastly, we discuss recommendations for future research, emphasizing roles for enhanced decision support and empirical analysis.