Fuels & Fuel Treatments

Journal article icon

The biggest bang for the buck: Cost‐effective vegetation treatment outcomes across drylands of the western United States

View article.

Restoration and rehabilitation are globally implemented to improve ecosystem condition but often without tracking treatment expenditures relative to ecological outcomes. We evaluated the cost‐effectiveness of widely conducted woody plant and herbaceous invasive plant removals and seeding treatments in drylands of the western United States from 2004 to 2018 to determine how land managers can optimize efforts. Woody plant cover decreased at a similar rate per dollar spent regardless of vegetation removal type, and the dominant invasive species was reduced by herbicide application. Relatively inexpensive herbicide application also had a large positive effect on seeded perennial grass cover that was enhanced by additional cost; while expensive woody mastication treatments had little effect regardless of additional cost. High seed cost was driven by including a large proportion of native species in seed mixes, and combined with high seeding cost, promoted a short‐term (2–3 yr) gain in perennial forb cover and species richness. In contrast, seeding and seed mix cost had no bearing on seeded perennial grass cover, in part, because relatively cheap nonnative seeded species rapidly increased in cover. Our results suggest the differential benefits of commonly implemented treatments aimed at reducing wildfire risk, improving wildlife habitat and forage, and reducing erosion. Given the growing need and cost of restoration and rehabilitation, we raise the importance of specifying treatment budgets and objectives, coupled with effectiveness monitoring, to improve future outcomes.

Journal article icon

Understory vegetation change following woodland reduction: Risk and benefits assessment

View article.

Woodland encroachment is a global issue linked to diminished ecosystem services, prompting the need for restoration efforts. However, restoration outcomes can be highly variable, making it difficult to interpret the ecological benefits and risks associated with woodland-reduction treatments within semiarid ecosystems. We addressed this uncertainty by assessing the magnitude and direction of vegetation change over a 15-year period at 129 sagebrush (Artemisia spp.) sites following pinyon (Pinus spp.) and juniper (Juniperus spp.) (P–J) reduction. Pretreatment vegetation indicated strong negative relationships between P–J cover and the abundance of understory plants (i.e., perennial grass and sagebrush cover) in most situations and all three components differed significantly among planned treatment types. Thus, to avoid confounding pretreatment vegetation and treatment type, we quantified overall treatment effects and tested whether distinct response patterns would be present among three dominant plant community types that vary in edaphic properties and occur within distinct temperature/precipitation regimes using meta-analysis (effect size = lnRR = ln[posttreatment cover/pretreatment cover]). We also quantified how restoration seedings contributed to overall changes in key understory vegetation components. Meta-analyses indicated that while P–J reduction caused significant positive overall effects on all shrub and herbaceous components (including invasive cheatgrass [Bromus tectorum] and exotic annual forbs), responses were contingent on treatment- and plant community-type combinations. Restoration seedings also had strong positive effects on understory vegetation by augmenting changes in perennial grass and perennial forb components, which similarly varied by plant community type. Collectively, our results identified specific situations where broad-scale efforts to reverse woodland encroachment substantially met short-term management goals of restoring valuable ecosystem services and where P–J reduction disposed certain plant community types to ecological risks, such as increasing the probability of native species displacement and stimulating an annual grass-fire cycle. Resource managers should carefully weigh these benefits and risks and incorporate additional, appropriate treatments and/or conservation measures for the unique preconditions of a given plant community in order to minimize exotic species responses and/or enhance desirable outcomes.

Journal article icon

Long-term effectiveness of tree removal to re-establish sagebrush and associated spatial patterns in surface and soil conditions

View article.

This study evaluated the long-term (13 years post-treatment) effectiveness of prescribed fire and mechanical tree removal to re-establish sagebrush steppe vegetation and associated spatial patterns in ground surface conditions and soil hydrologic properties of two woodland-encroached sites. Specifically, we assessed the effects of tree removal on: (1) vegetation and ground cover at the hillslope scale (990 m2 plots) and (2) associated spatial patterns in point-scale ground surface conditions and soil hydrologic properties along transects extending from tree bases and into the intercanopy areas between trees. Both sites were in mid to late stages of woodland encroachment with extensive bare conditions (~60–80% bare ground) throughout a degraded intercanopy area (~75% of the domain) surrounding tree islands (~25% of domain, subcanopy areas). All treatments effectively removed mature tree cover and increased hillslope vegetation. Enhanced herbaceous cover (4–15-fold increases) in burned areas reduced bare interspace (bare area between plants) by at least 4-fold and improved intercanopy hydraulic conductivity (> than 2-fold) and overall ecohydrologic function. Mechanical treatments retained or increased sagebrush and generally increased the intercanopy herbaceous vegetation. Intercanopy ground surface conditions and soil hydrologic properties in mechanical treatments were generally similar to those in burned areas but were also statistically similar to the same measures in untreated areas in most cases. This suggests that vegetation and ground surface conditions in mechanical treatments are trending toward a significantly improved hydrologic function over time. Treatments had limited impact on soil hydrologic properties within subcanopy areas; however, burning did reduce the soil water repellency strength and the occurrence of strong soil water repellency underneath trees by three- to four-fold. Overall, the treatments over a 13-year period enhanced the vegetation, ground surface conditions, and soil hydrologic properties that promote infiltration and limit runoff generation for intercanopy areas representing ~75% of the area at the sites. However, ecological tradeoffs in treatment alternatives were evident. The variations in woodland responses across sites, treatments, and measurement scales in this long-term study illustrate the complexity in predicting vegetation and hydrologic responses to tree removal on woodland-encroached sagebrush sites and underpin the need and value of multi-scale long-term studies.

Webinar, video, audio icon

Assessing FIRESHEDS for prioritization, planning, and investment

Webinar recording.

Description: The first webinar in a series of virtual learning opportunities that address the cultural shifts and adaptations that are being embraced at all levels to evolve and advance progress toward the vision and goals of the Cohesive Wildland Fire Strategy.

Presenter: Alan Ager, Research Forester, USFS Rocky Mountain Research Station

Webinar, video, audio icon

Introduction to fuel loading

View video (9:52)

Webinar, video, audio icon

Burning in the black range: Prescribed fire on the Gila National Forest

View video (8:16)

A brief look at how the Black Range of the Gila National Forest goes about putting down thousands of acres of prescribed fire. See how the District works in a collaborative and productive manner while working within the multiple-use framework to include grazing, wildlife, recreation, and community outreach. Supported by science, the agency looks to keep fire on the landscape.

Webinar, video, audio icon

The return of fire

View short video (4:11)

Fire researchers discuss the return of fire to western U.S. landscapes in the context of wildfire history.

Webinar, video, audio icon

Reading the tea leaves: A westwide rangeland fuel assessment

View video (15:45)

Hosted by Matt Reeves, using Microsoft Teams, click the “Watch on web instead” link to view.

Synthesis/Technical Report icon

Restoration applications of resource objective wildfires in western US forests: A status of knowledge review

View synthesis.

Frequent-fire forests of the western United States have undergone remarkable changes in structure, composition, and function due to historical exclusion of naturally occurring fire. Mechanized tree thinning to reduce forest density and fuel loads tends to be expensive and cannot be effectively implemented across all lands, and there is increasing interest in managing naturally ignited wildfires for meeting forest restoration objectives. To investigate general effectiveness of resource objective (RO) wildfires for restoring frequent-fire and associated forests of the western United States, a review of the related peer-reviewed literature was conducted.

Webinar, video, audio icon

Grazing for fire prevention

Webinar recording.

Panel discussion on grazing for fire prevention with Tracy Schohr, UCCE Livestock and Natural Resources Advisor for Plumas, Sierra & Butte Counties.

Narrow your search

Stay Connected