Invasive Species

Computer monitor with triangular play button on the screen

Evaluating strategies for increasing native plant diversity in crested wheatgrass seedings

In this webinar, Kent McAdoo, Rangeland Resources Specialist, University of Nevada Cooperative Extension, discusses strategies for increasing native plant diversity in crested wheatgrass seedings.

Webinar recording

Open book with lines simulating text on left and right pages

Understory plant community responses to fuel-reduction treatments and seeding in an upland PJ woodland

View paper.

This study found while understory perennial herbaceous plant cover remained low 1 and 2 yr post treatment, it increased by > 700% in all fuel-reduction treatment plots six growing seasons post treatment. Furthermore, while we observed minor increases in invasive annual grass, Bromus tectorum L. (cheatgrass), colonization in 2010 and 2011, there were substantial increases in B. tectorum cover by 2015. B. tectorum cover varied among treatments with the greatest cover in the unseeded mastication plot at nearly 30%. Seeding applications did not increase overall seed mix species cover but enhanced seed mix species richness and, thus, may have increased resistance to B. tectorum invasion in seeded treatment plots.

Open book with lines simulating text on left and right pages

Refining the cheatgrass-fire cycle in the Great Basin: precipitation timing and fine fuels predict fire trends

View paper.

This study investigated the complex relationships among weather, fine fuels, and fire in the Great Basin, USA. It found that cheatgrass cover increased in years with higher precipitation and especially when one of the previous 3 years also was particularly wet. Area burned in a given year was mostly associated with native herb and non-native forb cover, whereas cheatgrass mainly influenced area burned in the form of litter derived from previous years’ growth. Results suggest that the region’s precipitation pattern of consecutive wet years followed by consecutive dry years results in a cycle of fuel accumulation followed by weather conditions that increase the probability of wildfire events in the year when the cycle transitions from wet to dry. These patterns varied regionally but were strong enough to allow us to model annual wildfire risk across the Great Basin based on precipitation alone.

Open book with lines simulating text on left and right pages

Activated carbon to limit herbicide effects to seeded bunchgrasses when revegetating invaded rangelands

View article.

Results suggest that herbicide protection pods (HPPs) can be used to allow desired species to be seeded simultaneously with imazapic application. This will allow seeded species a longer window to become established before experiencing pressure from exotic annuals and enable a single-entry approach compared with multiple entries currently employed to revegetate annual grass − invaded rangelands. Though further field testing is needed, in particular with multiple species and higher herbicide applications rates, these results suggest that HPPs could improve our ability to restore and revegetate exotic annual grass − invaded rangelands.

Single sheet of paper with bullet points

Modeling desert shrubland changes with an invasive grass introduction and climate change

View research brief.

This brief summarizes work by researchers who modeled exactly how problematic the grass-fire cycle could be for non-fire-adapted desert shrublands under three sets of climate conditions. Specifically, three different degrees of inter-annual precipitation variability (i.e., none, medium, and extreme climate change variability; sigma = 0 to 0.8) and related invasive grass cover biomass was modeled to theoretically induce land degradation.

Open book with lines simulating text on left and right pages

Long-term trends in restoration and associated land treatments in the southwestern US

View paper.

Study results from this project suggest that treatments over a 70-year period on public lands in the southwestern United States are shifting toward restoration practices that are increasingly large, expensive, and related to fire and invasive species control.

Nevada Society for Range Management Suggested Reading – Fall 2017

View abstracts.

Abstracts of Recent Papers on Range Management in the West. Prepared by Charlie Clements, Rangeland Scientist, USDA Agricultural Research Service, Reno, NV

Open book with lines simulating text on left and right pages

Population genetic structure of Bromus tectorum in the mountains of western North America

View article.

The wide geographic distribution of several common haplotypes almost completely restricted to montane habitats suggests that dominant lineages in montane populations may possess adaptive syndromes that are preserved through reduced outcrossing rates or negative selection on outcrossed progeny. However, conclusive evidence of such local adaptation requires reciprocal seeding experiments and further characterization of adaptive traits and breeding system characteristics. Other lineages have likely risen to dominance in montane populations through selectively neutral processes.

Open book with lines simulating text on left and right pages

Post-fire vegetation response at the woodland-shrubland interface is mediated by the pre-fire community

View article.

Among sites with low-to-moderate tree cover, burning largely eliminated differences in understory composition, suggesting that biotic legacies were sufficient to result in predictable trajectories. In contrast, sites with high pre-fire tree cover transitioned into an annual forb-dominated community with sparse vegetation cover, suggesting that the loss of the understory community initiated unpredictable and divergent post-fire trajectories. Because plant communities were still changing four years after fire, it is unclear whether the alternate trajectories in sites with high tree cover will result in the formation of alternate states, or whether community composition will eventually converge with other sites at the same elevation. Results indicate that careful evaluation of site characteristics can be used to predict treatment outcomes at the woodland-shrubland interface, and to guide the appropriate use of prescribed fire or other management practices.

Open book with lines simulating text on left and right pages

Removal of perennial herbaceous species affects response of cold desert scrublands to fire

View article.

Results show that loss of perennial herbaceous species, which can result from inappropriate livestock grazing, and loss of shrubs, which often results from fire, interact to affect key functional groups. The implications are that ecosystem resilience to disturbance in Cold Desert shrublands decreases when competition from perennial native grasses and forbs for available resources no longer prevents dominance by A. tridentata and other shrubs and/ or annual invasive grasses. Managing livestock grazing to maintain or increase perennial herbaceous species, especially deep-rooted grasses, which contribute to resilience along elevation gradients, can help prevent threshold crossings to undesirable states and retain critical ecosystem services following disturbances such as wildfire.

Narrow your search

Stay Connected